Identification of outcome-based sub-populations using deep phenotyping and precision functional mapping across ADHD and ASD

使用 ADHD 和 ASD 的深度表型分析和精确功能图谱识别基于结果的亚群

基本信息

  • 批准号:
    10181076
  • 负责人:
  • 金额:
    $ 115.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-06 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

Project Summary Two of the earliest onset, most common, and costly neurodevelopmental disorders in child psychiatry are Attention Deficit Hyperactivity Disorder (ADHD) and Autism spectrum disorders (ASD). The clinical heterogeneity and the imprecise nature of their nosological distinctions represents a fundamentally confounding factor limiting a better understanding of their etiology, prevention, and treatment. In short, simple design assumptions regarding `homogeneity in samples' in typical and atypical populations may explain the frequently very small effect sizes in psychopathology research. Clinically, these same assumptions may account for why treatments often have weak or unpredictable effects. Recent developments in the computational sciences, have enabled the implementation of models sufficiently complex to address the aforementioned situation regarding subpopulations; however, very few tie the outputs to the specific outcome or questions being asked by the investigator. Under the parent grant, we developed and published a novel hybrid supervised/unsupervised machine learning method to characterize biologically relevant heterogeneity in ADHD and/or ASD – the Functional Random Forest (FRF). The hybrid FRF combines machine learning and graph theoretic analyses in order to identify population subtypes related to the clinically most important outcomes (in the case, of this proposal, negative valence symptoms) trans- diagnostically (ASD, ADHD, TD). Despite developing the FRF, subtyping results using functional MRI (fMRI) signals have lagged behind the subtyping of behavioral profiles. In addition, they have yet to become sufficiently sensitive and specific, for rapid translation into clinical practice. Fortunately, parallel advances in functional neuroimaging, allow for precision functional mapping of individuals, and can be synergistically combined with the FRF to greatly boost our ability to subtype and characterize individual patients from fMRI data. Here we combine the FRF with precision mapping to reveal common variants and individual specificity in global brain organization. The proposed individual-specific precision mapping moves beyond group averaging approaches, which are obscuring important inter-individual differences related to distinct pathophysiologies underlying negative valence across diagnoses (ADHD, ASD, TD). Thus, the current proposal aims to apply FRF algorithms to trans-diagnostic (TD, ASD, ADHD) behavioral and precision functional mapping RSFC data to identify distinct sub-populations across ASD, ADHD, and TD that relate to negative valence symptom dimensions.
项目摘要 儿童精神病学中起病最早、最常见且代价高昂的两种神经发育障碍 注意力缺陷多动障碍(ADHD)和自闭症谱系障碍(ASD)。临床部 异质性和它们的病因学区别的不精确本质从根本上代表了 混杂因素限制了对其病因、预防和治疗的更好了解。简而言之,简单 关于典型和非典型总体中“样本同质性”的设计假设可以解释 在精神病理学研究中经常是非常小的影响规模。在临床上,这些相同的假设可能 解释了为什么治疗通常有微弱或不可预测的影响。 计算科学的最新发展使模型的实施成为可能 足够复杂,足以解决上述关于亚群的情况;然而,很少有人与 调查员提出的具体结果或问题的结果。在家长的资助下,我们 开发并发布了一种新的混合监督/非监督机器学习方法来表征 ADHD和/或ASD-功能随机林(FRF)中与生物相关的异质性。混合动力车 FRF结合了机器学习和图论分析,以识别相关的种群亚型 对于临床上最重要的结果(在本建议的情况下,负价症状), 诊断(ASD、ADHD、TD)。 尽管开发了功能磁共振成像(FRF),但使用功能磁共振成像(FMRI)信号的亚型结果仍然落后 行为特征的亚型。此外,它们还没有变得足够敏感和具体,因为 快速转化为临床实践。幸运的是,功能神经成像的平行进展允许 精确的个体功能图谱,并可与FRF协同结合,大大提升 我们从fMRI数据中对单个患者进行亚型和特征划分的能力。在这里,我们将FRF与 精确的图谱,揭示全球大脑组织中的共同变异和个体特异性。这个 拟议的特定于个人的精度映射超越了群体平均方法,这些方法是 掩盖与潜在的不同病理生理学相关的重要个体间差异 跨诊断(ADHD、ASD、TD)的价态。 因此,当前的提案旨在将FRF算法应用于跨诊断(TD、ASD、ADHD) 行为和精确的功能映射RSFC数据,以识别ASD中不同的亚群, ADHD和TD与负性效价症状维度相关。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nico Dosenbach其他文献

Nico Dosenbach的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nico Dosenbach', 18)}}的其他基金

Functional Connectivity, Brain Development, and Outcomes in Chiari Type I Malformation
Chiari I 型畸形的功能连接、大脑发育和结果
  • 批准号:
    10629122
  • 财政年份:
    2023
  • 资助金额:
    $ 115.71万
  • 项目类别:
PEDIATRIC BRAIN INJURY RECOVERY VIA USE-DRIVEN FUNCTIONAL NETWORK REORGANIZATION
通过使用驱动的功能网络重组实现小儿脑损伤康复
  • 批准号:
    9244075
  • 财政年份:
    2015
  • 资助金额:
    $ 115.71万
  • 项目类别:
PEDIATRIC BRAIN INJURY RECOVERY VIA USE-DRIVEN FUNCTIONAL NETWORK REORGANIZATION
通过使用驱动的功能网络重组实现小儿脑损伤康复
  • 批准号:
    8996726
  • 财政年份:
    2015
  • 资助金额:
    $ 115.71万
  • 项目类别:
Identification of outcome-based sub-populations using deep phenotyping and precision functional mapping across ADHD and ASD
使用 ADHD 和 ASD 的深度表型分析和精确功能图谱识别基于结果的亚群
  • 批准号:
    10402304
  • 财政年份:
    2012
  • 资助金额:
    $ 115.71万
  • 项目类别:
Identification of outcome-based sub-populations using deep phenotyping and precision functional mapping across ADHD and ASD
使用 ADHD 和 ASD 的深度表型分析和精确功能图谱识别基于结果的亚群
  • 批准号:
    10600093
  • 财政年份:
    2012
  • 资助金额:
    $ 115.71万
  • 项目类别:

相似海外基金

Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
  • 批准号:
    23K09542
  • 财政年份:
    2023
  • 资助金额:
    $ 115.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The impact of changes in social determinants of health on adolescent and young adult mental health during the COVID-19 pandemic: A longitudinal study of the Asenze cohort in South Africa
COVID-19 大流行期间健康社会决定因素的变化对青少年和年轻人心理健康的影响:南非 Asenze 队列的纵向研究
  • 批准号:
    10755168
  • 财政年份:
    2023
  • 资助金额:
    $ 115.71万
  • 项目类别:
A Priority Setting Partnership to Establish a Patient, Caregiver, and Clinician-identified Research Agenda for Adolescent and Young Adult Cancer in Canada
建立优先合作伙伴关系,以建立患者、护理人员和临床医生确定的加拿大青少年和年轻人癌症研究议程
  • 批准号:
    480840
  • 财政年份:
    2023
  • 资助金额:
    $ 115.71万
  • 项目类别:
    Miscellaneous Programs
Incidence and Time on Onset of Cardiovascular Risk Factors and Cardiovascular Disease in Adult Survivors of Adolescent and Young Adult Cancer and Association with Exercise
青少年和青年癌症成年幸存者心血管危险因素和心血管疾病的发病率和时间以及与运动的关系
  • 批准号:
    10678157
  • 财政年份:
    2023
  • 资助金额:
    $ 115.71万
  • 项目类别:
Fertility experiences among ethnically diverse adolescent and young adult cancer survivors: A population-based study
不同种族青少年和年轻成年癌症幸存者的生育经历:一项基于人群的研究
  • 批准号:
    10744412
  • 财政年份:
    2023
  • 资助金额:
    $ 115.71万
  • 项目类别:
Treatment development for refractory leukemia using childhood/adolescent, and young adult leukemia biobank
利用儿童/青少年和青年白血病生物库开发难治性白血病的治疗方法
  • 批准号:
    23K07305
  • 财政年份:
    2023
  • 资助金额:
    $ 115.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular design of Two-Way Player CAR-T cells to overcome disease/antigen heterogeneity of childhood, adolescent, and young adult cancers
双向 CAR-T 细胞的分子设计,以克服儿童、青少年和年轻成人癌症的疾病/抗原异质性
  • 批准号:
    23H02874
  • 财政年份:
    2023
  • 资助金额:
    $ 115.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Effects of adolescent social isolation on adult decision making and corticostriatal circuitry
青少年社会隔离对成人决策和皮质纹状体回路的影响
  • 批准号:
    10756652
  • 财政年份:
    2023
  • 资助金额:
    $ 115.71万
  • 项目类别:
Adolescent trauma produces enduring disruptions in sleep architecture that lead to increased risk for adult mental illness
青少年创伤会对睡眠结构产生持久的破坏,从而导致成人精神疾病的风险增加
  • 批准号:
    10730872
  • 财政年份:
    2023
  • 资助金额:
    $ 115.71万
  • 项目类别:
Using Tailored mHealth Strategies to Promote Weight Management among Adolescent and Young Adult Cancer Survivors
使用量身定制的移动健康策略促进青少年和年轻癌症幸存者的体重管理
  • 批准号:
    10650648
  • 财政年份:
    2023
  • 资助金额:
    $ 115.71万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了