Improving Post-Acute Care Value for Veterans
提高退伍军人的急性后护理价值
基本信息
- 批准号:10187950
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:AcuteAffectAgeAlgorithmsAreaBig DataCaringCharacteristicsCommunitiesContractsDataData SetData SourcesDevelopmentEmergency department visitEngineeringEnrollmentFee-for-Service PlansFeesGeriatricsHealth care facilityHealthcareHomeHospitalizationHospitalsIndividualInformation SystemsLeadershipLifeLong-Term CareMachine LearningMedicaidMedicalMedicareMedicare/MedicaidMethodologyMethodsModelingNursing HomesNursing StaffOutcomePatientsPoliciesPopulationPositioning AttributeProcessProviderProxyPublishingQuality of CareQueuing TheoryRecording of previous eventsRehabilitation therapyRiskRisk AdjustmentRoleShapesSiteSkilled Nursing FacilitiesSystemTechniquesTimeVariantVeteransWorkacute careadverse event riskadverse outcomeauthoritycare costscare episodecare providerscommunity livingcosthealth economicshospital readmissionhuman old age (65+)improvedimproved outcomeinnovationinsightmachine learning methodmilitary veteranmortalitynoveloperationpoint of caresuccesstool
项目摘要
Background: The transition to a skilled nursing facility (SNF) after an acute hospitalization is one of the most
perilous times in the life of an older Veteran. Veterans undergo more than 250,000 transitions between
hospitals and SNFs annually, but more than 1 in 4 is readmitted to the hospital from SNF and less than half
have returned to the community by 100 days following hospital discharge. Although the intent of SNF care is
to allow recuperation and rehabilitation, Veterans who do not successfully recover are commonly placed in
institutional long-term care at significant cost to themselves and to the VA, which spends more than $7 billion
annually on this care. However, SNFs vary widely in their rates of community discharge and costs of care
delivered. It is unclear how to identify “high-value” SNFs (those that deliver the best community discharge rates
at lowest cost) for Veterans since existing public quality metrics do not include VA SNFs, do not list Veteran-
specific outcomes, and do not include costs. Similarly, it is unclear how much matching individual Veteran
needs with particular SNF characteristics might improve value. The VA as both payer and provider of SNF
care has the unique opportunity to develop an optimal SNF network to drive high-value care.
Significance/Impact: This work aligns with VA priorities to develop an integrated, high-performing network for
Veterans as part of the MISSION Act and positions the VA as a leader in delivery of post-acute care. There
are more than 4 million Veterans currently over age 65, making it imperative to improve outcomes and lower
costs in SNFs as more Veterans transition out of the hospital to this care setting.
Innovation: The approach uses novel data sets and methods drawn from health economics, big data, and
systems engineering to provide new insights. To our knowledge, there are no published studies describing the
outcomes of Veterans in post-acute care, identifying characteristics of high-performing facilities, nor
establishing how matching patient to post-acute care provider characteristics affects outcomes.
Specific Aims: Our Specific Aims are to:
1) Compare outcomes (successful discharge to the community) and costs (Federal dollars) across the
population of Veterans discharged from a VA hospital to the three most common post-acute care
settings where Veterans receive SNF care: CLCs, CNHs, and non-VA SNFs.
2) Evaluate the effect of matching individual subpopulations of Veterans (e.g., by risk for adverse
outcome) to SNF type (CLCs, CNHs, or non-VA SNFs) and SNF star rating on outcomes and costs.
3) Compare the effects of consolidating SNF referrals to the SNF type with best outcomes and lowest
costs (Aim 1) or matching individual Veteran characteristics to different SNFs (Aim 2) on Veteran
outcomes, overall costs of care, and SNF capacity.
Methodology: This proposal uses advanced statistical techniques (such as instrumental variable and machine
learning methods) and a unique dataset (the 2014-18 Residential History File, which concatenates VA, fee-
basis, Medicare, and Medicaid data into longitudinal episodes of care for individual Veterans) to accomplish
our Aims.
Implementation/Next Steps: The results of this work will be disseminated to VA Geriatrics and Extended
Care and Office of Community Care leadership, who have been involved in the development of the proposal,
as well as VISN and VA facility leadership through two tools that can be used 1) at the bedside to optimize
SNF choice and 2) at a leadership level to help shape the SNF network to maximize value.
背景:在急性住院后过渡到专业护理机构(SNF)是最重要的因素之一。
一个老老兵生命中的危险时刻。退伍军人经历了超过250,000次过渡,
医院和SNF每年,但超过四分之一的人从SNF重新入院,不到一半的人
在出院后100天内返回社区。尽管SNF护理的目的是
为了让康复和康复,没有成功康复的退伍军人通常被安置在
机构长期护理对他们自己和退伍军人事务部来说都是巨大的成本,退伍军人事务部花费了70多亿美元
每年都有这样的关怀。然而,SNF在社区出院率和护理成本方面差异很大
交付。目前尚不清楚如何识别“高价值”SNF(提供最佳社区排放率的SNF)
由于现有的公共质量指标不包括VA SNF,因此不列出退伍军人-
具体结果,不包括费用。同样,目前还不清楚有多少匹配的个人退伍军人
具有特定SNF特性的需求可能会提高价值。VA作为SNF的支付者和提供者
护理有独特的机会来开发一个最佳的SNF网络,以推动高价值的护理。
意义/影响:这项工作与VA优先事项保持一致,以开发一个集成的高性能网络,
退伍军人作为使命法案的一部分,并将退伍军人事务部定位为提供急性后护理的领导者。那里
目前有400多万65岁以上的退伍军人,因此必须改善结果,
随着更多的退伍军人从医院过渡到这种护理环境,SNF的成本增加。
创新:该方法使用了来自卫生经济学、大数据和
系统工程提供新的见解。据我们所知,没有发表的研究描述
退伍军人在急性后护理的结果,确定高性能设施的特点,也
确定患者与急性期后护理提供者特征的匹配如何影响结果。
具体目标:我们的具体目标是:
1)比较结果(成功出院到社区)和成本(联邦美元),
退伍军人从VA医院出院,接受三种最常见的急性后护理
退伍军人接受SNF护理的环境:CLC,CNH和非VA SNF。
2)评估匹配退伍军人个体亚群的效果(例如,按不利风险
结果)到SNF类型(CLC、CNH或非VA SNF)和SNF结局和成本的星星评级。
3)比较巩固SNF转诊与SNF类型的效果,
成本(目标1)或将退伍军人的个人特征与退伍军人的不同SNF(目标2)相匹配
结果,护理的总成本和SNF能力。
方法:本提案使用先进的统计技术(如工具变量和机器
学习方法)和一个独特的数据集(2014-18住宅历史文件,其中串联VA,费用-
基础,医疗保险和医疗补助数据到纵向事件的照顾个别退伍军人),以实现
我们的目标
实施/后续步骤:这项工作的结果将传播到VA老年病和扩展
护理和社区护理办公室的领导,谁一直参与制定的建议,
以及VISN和VA设施领导,通过两种工具,可用于1)在床边优化
SNF的选择和2)在领导水平,以帮助塑造SNF网络,以最大限度地提高价值。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Edward Burke其他文献
Robert Edward Burke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Edward Burke', 18)}}的其他基金
Effect of post-acute care pay for performance in skilled nursing facilities on outcomes and disparities
熟练护理机构的急性后护理薪酬对结果和差异的影响
- 批准号:
10365771 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Effect of post-acute care pay for performance in skilled nursing facilities on outcomes and disparities
熟练护理机构的急性后护理薪酬对结果和差异的影响
- 批准号:
10581532 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Use of post-acute care and outcomes among Medicare Advantage and fee-for-service beneficiaries
Medicare Advantage 和按服务收费受益人对急性后护理的使用和结果
- 批准号:
10659109 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Use of post-acute care and outcomes among Medicare Advantage and fee-for-service beneficiaries
Medicare Advantage 和按服务收费受益人对急性后护理的使用和结果
- 批准号:
10390350 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Use of post-acute care and outcomes among Medicare Advantage and fee-for-service beneficiaries
Medicare Advantage 和按服务收费受益人对急性后护理的使用和结果
- 批准号:
10211250 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Building a Model VA-State Partnership to Support Non-Institutional Long-Term Care for Veterans
建立退伍军人管理局与州的示范伙伴关系,支持退伍军人的非机构长期护理
- 批准号:
10016130 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Improving Transitional Care for Veterans Discharged to Post-acute Care Facilities
改善出院到急性后护理机构的退伍军人的过渡护理
- 批准号:
10175009 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Improving Transitional Care for Veterans Discharged to Post-acute Care Facilities
改善出院到急性后护理机构的退伍军人的过渡护理
- 批准号:
9981432 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Improving Transitional Care for Veterans Discharged to Post-acute Care Facilities
改善出院到急性后护理机构的退伍军人的过渡护理
- 批准号:
8985224 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Improving Transitional Care for Veterans Discharged to Post-acute Care Facilities
改善出院到急性后护理机构的退伍军人的过渡护理
- 批准号:
10173876 - 财政年份:2015
- 资助金额:
-- - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
-- - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
-- - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Miscellaneous Programs