Resolving Spatiotemporal Determinants of Cell Specification in Corticogenesis with Latent Space Methods
用潜在空间方法解决皮质生成中细胞规格的时空决定因素
基本信息
- 批准号:10188106
- 负责人:
- 金额:$ 11.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:ALS patientsAlgorithmsAnatomyAutomobile DrivingBRAIN initiativeBar CodesBehavioralBiologicalBiological AssayBrainBrain regionCCRL2 geneCRISPR/Cas technologyCatalogsCell CycleCell Cycle RegulationCellsCensusesClassificationCollectionCompetenceComplexComputer ModelsComputer softwareCoupledCuesDataData SetDevelopmentDimensionsDiseaseDoctor of PhilosophyExperimental ModelsGene ExpressionGene Expression ProfileGenerationsGenesGeneticGenetic TranscriptionGenetic VariationGenetic studyGoalsHuman GeneticsIn SituIndividualInstitutesKnowledgeLeadLearningLengthLinkLocationMachine LearningMeasurementMethodologyMethodsModelingMolecularMultiomic DataNatureNeuraxisNeurodegenerative DisordersNeuronal PlasticityPathway interactionsPatternPerformancePhasePhenotypePhysiologic pulsePositioning AttributeProbabilityProcessPsychological TransferRegulationResearchRetinaStatistical ModelsStochastic ProcessesSystemTechniquesTestingTimeTrainingTranscriptional RegulationValidationVariantWorkanalytical toolbasebiological systemscell typedata integrationfunctional plasticitygenetic variantgenome wide association studyhigh dimensionalityimprovedinduced pluripotent stem cellmultimodal datanervous system developmentneural circuitneuronal circuitryneuropsychiatric disordernovelnucleotide analogpedagogyprogenitorrelating to nervous systemrepositorysingle-cell RNA sequencingspatiotemporalstatisticssuccesssupervised learningtime usetool
项目摘要
Project Summary
High-throughput profiling of hundreds of thousands of cells in the central nervous system (CNS) is currently
underway. One of the goals of the BRAIN initiative is to build a census of cell types in the CNS, however
previous work in single cell RNA sequencing (scRNAseq) has demonstrated that reliance on small collections
of marker genes for cell type/state/position classification is insufficient to account for the dynamic nature of and
variation in cellular classes/states. Previous work from both myself and others has demonstrated that latent
space methods identify low dimensional patterns from high dimensional profiling data can discover molecular
drivers of cell types and states in scRNAseq. However, the use of algorithms untethered to biological
constraints or not extensively functionally validated can lead to the arbitrary delineation of cell class/state and
the trivial designation of “novel” cell types. As proper development of the CNS requires precise regulation and
coordination of spatial and temporal cues, the overall objective of this application is to develop analytic and
experimental methods that integrate spatiotemporal information with scRNAseq to learn meaningful latent
spaces. Specifically, I will 1) generate a comprehensive collection of transcriptional signatures for spatial
features of the brain, 2) build dimension reduction software to encode spatial and cell cycle information to
account for the highly specific organization of cells in the CNS, 3) derive a statistic, projectionDrivers, that
allows for quantification of the gene drivers of differential latent space usage, and 4) define a statistic,
proMapR, that will tell you the probability of a cell existing in a particular location in the brain at a given point in
time from the cell's transcriptional signature. The ability to define and validate biologically meaningful latent
spaces not only enables multiOmic data integration and exploratory analysis of scRNA-seq data via the
massive amount of publicly available data, but also lays the groundwork for multimodal data integration—a
necessary next step to characterize how individual cells and complex neural circuits interact in both time and
space.
项目摘要
目前,中枢神经系统(CNS)中数十万细胞的高通量分析是一项重要的研究。
正在进行中然而,BRAIN计划的目标之一是建立CNS细胞类型的普查,
之前在单细胞RNA测序(scRNaseq)方面的工作已经证明了对小集合的依赖
用于细胞类型/状态/位置分类的标记基因的数量不足以解释细胞的动态性质,
细胞类别/状态的变化。我和其他人以前的研究表明,
空间方法从高维分布数据中识别低维模式可以发现分子
scRNAseq中细胞类型和状态的驱动因素。然而,使用不受生物学约束的算法
约束或没有广泛的功能验证可以导致任意描绘细胞类/状态,
“新”细胞类型的琐碎命名。由于中枢神经系统的正常发育需要精确的调节,
协调的空间和时间线索,这个应用程序的总体目标是开发分析和
将时空信息与scRNAseq整合以学习有意义的潜在信息的实验方法
空间.具体来说,我将1)生成一个全面的空间转录签名集合,
2)构建降维软件来编码空间和细胞周期信息,
解释了CNS中细胞的高度特异性组织,3)导出统计量projectionDrivers,
允许量化差异潜在空间使用的基因驱动,以及4)定义统计量,
proMapR,它会告诉你一个细胞存在于大脑特定位置的概率,
从细胞的转录签名中提取时间。定义和验证生物学上有意义的潜在
spaces不仅能够通过多个数据库整合scRNA-seq数据,
大量的公共可用数据,但也为多模式数据集成奠定了基础,
必要的下一步,以表征如何个别细胞和复杂的神经回路相互作用,在时间和
空间
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Genevieve Lauren Stein-O'Brien其他文献
Genevieve Lauren Stein-O'Brien的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Genevieve Lauren Stein-O'Brien', 18)}}的其他基金
Resolving Spatiotemporal Determinants of Cell Specification in Corticogenesis with Latent Space Methods
用潜在空间方法解决皮质生成中细胞规格的时空决定因素
- 批准号:
10703714 - 财政年份:2021
- 资助金额:
$ 11.07万 - 项目类别:
Resolving Spatiotemporal Determinants of Cell Specification in Corticogenesis with Latent Space Methods
用潜在空间方法解决皮质生成中细胞规格的时空决定因素
- 批准号:
10378061 - 财政年份:2021
- 资助金额:
$ 11.07万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 11.07万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 11.07万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 11.07万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 11.07万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 11.07万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 11.07万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 11.07万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 11.07万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 11.07万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 11.07万 - 项目类别:
Research Grant