A Trans-Nordic Study of Extreme Major Depression
跨北欧的极度抑郁症研究
基本信息
- 批准号:10187656
- 负责人:
- 金额:$ 79.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-10 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAgeAlgorithmsBody mass indexClinicalCollaborationsComputer softwareDataData SetDenmarkDevelopmentDiagnosisDiagnosticFamilyFoundationsFutureGenerationsGeneticGenetic RiskGenomicsGoalsHealthHealthcareHealthcare SystemsHereditary DiseaseHeritabilityIndividualInfrastructureInheritedIntentionInterventionLifeMajor Depressive DisorderMedicalMedical HistoryMental disordersMethodsModelingNorwayOutcomePaperPatientsPatternPersonsPhenotypePopulationPreventivePsychiatryPsychosesQuality of lifeRecording of previous eventsReproducibilityResearch PersonnelRetrospective cohortRiskRisk FactorsSample SizeSamplingSchemeScotlandSecureSeveritiesSmokingSocial FunctioningSuicideSwedenTailTestingTrainingTwin Multiple BirthValidationWorkbasebiobankclinically relevantcohortcompleted suicidedata analysis pipelinedata harmonizationdensitydesigndisabilityfollow-upgenetic informationgenetic pedigreegenome wide association studygenome-widegenomic dataimprovedmeetingsphenotypic dataprediction algorithmpredictive modelingpsychiatric genomicsrecruitrisk variantsextertiary preventiontherapy resistant
项目摘要
Project Summary/Abstract
Major depressive disorder (MDD) affects >300 million people worldwide. It is a leading contributor to disability
and suicide, and thus a cross-cutting risk factor for many adverse life and health outcomes. It is heritable, and
genome-wide association recently been informative. However, nearly all current MDD samples are not enriched
in individuals with the highest clinical severity (i.e., the extreme tail of the phenotype distribution), a critical
weakness for clinical prediction. We propose to focus on “phenotype extreme MDD”. We will define these
individuals empirically on a population scale over years of follow-up in order to capture individuals with markedly
worse MDD clinical features (e.g., treatment-resistance, dense patterns of treatment, psychosis) and poor
outcomes (e.g., poor social function, disability, suicide). Cases with phenotype extreme MDD disproportionally
contribute to the global burden of MDD. We show that we can identify these individuals and preliminary data
suggest these individuals have a greater inherited burden of MDD risk alleles. We will address an additional
weakness in the field via multiple, highly powered layers of replication in independent cohorts. We need to know
quickly whether a promising model can replicate and generalize, and we have built the infrastructure for this.
In Aim 1, we will empirically identify “phenotype extreme MDD” in a training set of ⅓ of the Swedish population
with replication in independent samples (the other ⅔ from Sweden and harmonized datasets from Denmark and
Norway) and then generalization to independent samples from the UK (Generation Scotland, UK Biobank), and
the US (PsycheMERGE). In Aim 2, we will validate the empirical phenotype extreme MDD definition using
genomic data in the Aim 1 populations (i.e., pedigree- and SNP-heritability, contrast with other MDD definitions,
evaluate whether individuals with phenotype extreme MDD carry higher genetic risk scores for MDD). In Aim 3,
we will develop clinically useful prediction algorithms for extreme MDD: can we predict at first presentation who
will subsequently develop phenotype extreme MDD? We will have exceptional statistical power for all Aims.
Successful completion of these aims will enable our transformative, tertiary-preventive intention of valid and
clinically useful prediction of the subsequent development of phenotype extreme MDD early in a person’s
treatment history. This is foundational to achieve the overarching translational goal of deploying these models
on national scales in order to improve the health of MDD patients who are most severely ill.
项目摘要/摘要
重度抑郁症(MDD)在全球范围内影响> 3亿人。这是残疾的主要贡献者
和自杀,因此是许多不利生活和健康结果的横切风险因素。这是可遗传的,并且
全基因组协会最近提供了信息。但是,几乎所有当前的MDD样品都没有丰富
在临床严重程度最高(即表型分布的极端尾巴)的个体中,
临床预测的弱点。我们建议专注于“表型极端MDD”。我们将定义这些
在多年的随访中,个人在人口规模上进行经验,以占领个人
MDD临床特征较差(例如,耐药性,致密的治疗方式,精神病)和差
结果(例如,社会功能差,残疾,自杀)。表型极端MDD的情况不成比例
有助于MDD的全球燃烧。我们证明我们可以识别这些人并初步数据
暗示这些人对MDD风险等位基因的遗传燃烧更大。我们将解决一个额外的
通过多个高度动力的复制层在独立队列中的弱点。我们需要知道
很快,有前途的模型是否可以复制和概括,我们已经为此建立了基础架构。
在AIM 1中,我们将在瑞典人口的训练集中凭经验识别“表型极端MDD”
在独立样本中复制(另一个来自瑞典的⅔,来自丹麦的数据集,
挪威),然后对来自英国(苏格兰一代,英国生物银行)的独立样本进行概括,
美国(Psychemerge)。在AIM 2中,我们将使用使用经验表型的极限MDD定义来验证
AIM 1种群中的基因组数据(即谱系和SNP可her性,与其他MDD定义形成对比,
评估表型极限MDD的个体是否具有MDD的遗传风险评分较高)。在AIM 3中,
我们将开发极限MDD的临床上有用的预测算法:我们可以在首先预测谁
随后会发展表型极限MDD?我们将对所有目标都具有出色的统计能力。
这些目标的成功完成将使我们的变革性,三级预防意图有效和
在一个人的早期,对表型的随后发展具有临床上有用的预测
治疗史。这是实现部署这些模型的总体翻译目标的基础
在国家尺度上,以改善最严重患病的MDD患者的健康状况。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PATRICK F SULLIVAN其他文献
PATRICK F SULLIVAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PATRICK F SULLIVAN', 18)}}的其他基金
1/3 Sequencing and Trans-Diagnostic Phenotyping of Severe Mental Illness in Diverse Populations
不同人群中严重精神疾病的 1/3 测序和跨诊断表型
- 批准号:
10502677 - 财政年份:2022
- 资助金额:
$ 79.52万 - 项目类别:
A Trans-Nordic Study of Extreme Major Depression
跨北欧的极度抑郁症研究
- 批准号:
10598000 - 财政年份:2020
- 资助金额:
$ 79.52万 - 项目类别:
A Trans-Nordic Study of Extreme Major Depression
跨北欧的极度抑郁症研究
- 批准号:
10034202 - 财政年份:2020
- 资助金额:
$ 79.52万 - 项目类别:
A Trans-Nordic Study of Extreme Major Depression
跨北欧的极度抑郁症研究
- 批准号:
10376800 - 财政年份:2020
- 资助金额:
$ 79.52万 - 项目类别:
2/2 Genetics at an extreme: an efficient genomic study of individuals with clinically severe major depression receiving ECT
2/2 极端遗传学:对接受 ECT 的临床严重抑郁症患者进行有效的基因组研究
- 批准号:
10214484 - 财政年份:2019
- 资助金额:
$ 79.52万 - 项目类别:
2/2 Genetics at an extreme: an efficient genomic study of individuals with clinically severe major depression receiving ECT
2/2 极端遗传学:对接受 ECT 的临床严重抑郁症患者进行有效的基因组研究
- 批准号:
10021723 - 财政年份:2019
- 资助金额:
$ 79.52万 - 项目类别:
2/2 Genetics at an extreme: an efficient genomic study of individuals with clinically severe major depression receiving ECT
2/2 极端遗传学:对接受 ECT 的临床严重抑郁症患者进行有效的基因组研究
- 批准号:
10674837 - 财政年份:2019
- 资助金额:
$ 79.52万 - 项目类别:
2/2 Genetics at an extreme: an efficient genomic study of individuals with clinically severe major depression receiving ECT
2/2 极端遗传学:对接受 ECT 的临床严重抑郁症患者进行有效的基因组研究
- 批准号:
10455058 - 财政年份:2019
- 资助金额:
$ 79.52万 - 项目类别:
1/7 Psychiatric Genomics Consortium: Finding actionable variation
1/7 精神病学基因组联盟:寻找可行的变异
- 批准号:
9460671 - 财政年份:2017
- 资助金额:
$ 79.52万 - 项目类别:
1/7 Psychiatric Genomics Consortium: Finding actionable variation
1/7 精神病学基因组学联盟:寻找可行的变异
- 批准号:
9079743 - 财政年份:2016
- 资助金额:
$ 79.52万 - 项目类别:
相似国自然基金
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
恒星模型中氧元素丰度的变化对大样本F、G、K矮星年龄测定的影响
- 批准号:12303035
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
- 批准号:12301629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
中国东部地区大气颗粒物的年龄分布特征及其影响因素的模拟研究
- 批准号:42305193
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 79.52万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 79.52万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 79.52万 - 项目类别:
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 79.52万 - 项目类别:
Identifying and Addressing the Effects of Social Media Use on Young Adults' E-Cigarette Use: A Solutions-Oriented Approach
识别和解决社交媒体使用对年轻人电子烟使用的影响:面向解决方案的方法
- 批准号:
10525098 - 财政年份:2023
- 资助金额:
$ 79.52万 - 项目类别: