Ultrasonic Neuromodulation: From Mechanism To Optimal Application

超声神经调节:从机制到最佳应用

基本信息

  • 批准号:
    10186833
  • 负责人:
  • 金额:
    $ 23.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-04-01 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

Entirely noninvasive neuromodulation achieved using low-intensity focused ultrasound (US) is one of the most exciting frontiers in neuroscience today. US is emerging as a new way of stimulating specific regions of the brain noninvasively through the skull of animals and humans. In comparison to other noninvasive alternatives such as transcranial magnetic stimulation (TMS) or transcranial electrical stimulation (tDCS, tACS), US propagates deep into the brain while also retaining a sharp spatial focus. TMS is currently used to treat neuropathic pain and major depressive disorder. US will provide a much more focused alternative, with fewer side effects, to treat these disorders. The method may also be used as a noninvasive and focused alternative to deep brain stimulation (DBS). However, it is unknown how US stimulates neurons and what stimulus parameters researchers and clinicians should use to achieve optimal stimulation. The principal investigator (PI) has a background in neural engineering, including pharmacological neuromodulation and electrophysiology. To elucidate the mechanism of US neuromodulation and to work toward optimal stimulation, the PI will pursue training through the K99 Pathway to Independence Award mechanism at Stanford University. He has three faculty members with expertise in diverse aspects of US neuromodulation as mentors. In the mentored phase, the PI and colleagues will identify which neurons and ion channels are activated by US using a small invertebrate (C. elegans) as a model. Using this animal, the PI will also rapidly establish the set of optimal stimulation parameters. In a translational part of the training, the PI, within an interdisciplinary team at Stanford, will build on these findings to determine optimal stimulus parameters in a large mammal (sheep). To do so, they will ultrasonically stimulate a deep brain structure, verify the US focus using MR imaging, and record EEG responses. This work will also establish safety threshold at which there is no detectable tissue damage. The training will teach the PI five skills essential to attain independence. He will learn how to i) conduct mechanistic investigations at the circuit level ii) perform US stimulation in large animals iii) mentor a student to conduct US experiments iv) establish collaborations and v) present findings. In the independent phase, the PI and his students will apply this training. They will build on the optimal stimulus and safety data to devise optimal stimulation protocols in species with which the PI worked previously: macaque monkeys and humans. The monkey will serve to optimize the effectiveness and validate the safety of the approach before it will be advanced to humans. Together, this research will elucidate how US activates neurons, and provide a set of US parameters that activates neurons efficiently. It is expected that this knowledge will provide a new tool to study the function of neural circuits and open doors for clinical applications to alleviate neurological disorders.
使用低强度聚焦超声(US)实现的非侵入性神经调节是 当今神经科学最令人兴奋的前沿领域。美国正在成为刺激特定地区的新方式 通过动物和人类的头骨进行非侵入性的大脑扫描。与其他非侵入性 替代方案,例如经颅磁刺激(TMS)或经颅电刺激(tDCS,tACS), US传播到大脑深处,同时也保留了清晰的空间焦点。TMS目前用于治疗 神经性疼痛和重度抑郁症。美国将提供一个更有针对性的替代方案, 副作用来治疗这些疾病。该方法也可以作为一种非侵入性和集中的替代方法 脑深部电刺激(DBS)然而,US如何刺激神经元以及什么刺激是未知的。 研究人员和临床医生应该使用的参数来实现最佳刺激。 主要研究者(PI)具有神经工程背景,包括药理学 神经调节和电生理学。阐明超声神经调节的机制, 为了获得最佳刺激,PI将通过K99独立之路奖进行培训 斯坦福大学的一项研究。他有三名教师,他们在美国的各个方面都有专业知识。 神经调节作为导师 在指导阶段,PI和同事将识别哪些神经元和离子通道 通过使用小无脊椎动物(C. Elegans)作为一个模型。利用这种动物,PI也将迅速 建立最佳刺激参数的集合。在训练的翻译部分中,PI在 斯坦福大学的一个跨学科小组将在这些发现的基础上, 大型哺乳动物(绵羊)。为此,他们将用超声波刺激大脑深层结构, 使用磁共振成像,并记录脑电图反应。这项工作还将建立安全阈值, 没有可检测到的组织损伤培训将教授PI获得独立所必需的五项技能。他将 学习如何i)在电路级进行机械研究ii)在大型动物中进行US刺激 iii)指导学生进行美国实验iv)建立合作和v)呈现结果。 在独立阶段,PI及其学生将应用此培训。他们将建立在最佳的 刺激和安全性数据,以在PI之前工作的物种中设计最佳刺激方案: 猕猴和人类。猴子将用于优化有效性并验证 在它被应用于人类之前。 总之,本研究将阐明US如何激活神经元,并提供一组US参数 能有效激活神经元期望这些知识能为研究该函数提供新的工具 为临床应用打开大门,以减轻神经系统疾病。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Remote targeted electrical stimulation.
Neuromodulation with transcranial focused ultrasound.
  • DOI:
    10.3171/2017.11.focus17621
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Kubanek J
  • 通讯作者:
    Kubanek J
Sustained modulation of primate deep brain circuits with focused ultrasonic waves.
  • DOI:
    10.1016/j.brs.2023.04.012
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Webb, Taylor D.;Wilson, Matthew G.;Odeen, Henrik;Kubanek, Jan
  • 通讯作者:
    Kubanek, Jan
Durable effects of deep brain ultrasonic neuromodulation on major depression: a case report.
Acoustic properties across the human skull.
  • DOI:
    10.1016/j.ultras.2021.106591
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Riis TS;Webb TD;Kubanek J
  • 通讯作者:
    Kubanek J
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jan Kubanek其他文献

Jan Kubanek的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jan Kubanek', 18)}}的其他基金

Noninvasive Targeted Neuromodulation
无创靶向神经调节
  • 批准号:
    10515789
  • 财政年份:
    2022
  • 资助金额:
    $ 23.31万
  • 项目类别:

相似海外基金

NSF Engines Development Award: Utilizing space research, development and manufacturing to improve the human condition (OH)
NSF 发动机发展奖:利用太空研究、开发和制造来改善人类状况(OH)
  • 批准号:
    2314750
  • 财政年份:
    2024
  • 资助金额:
    $ 23.31万
  • 项目类别:
    Cooperative Agreement
NSF Engines Development Award: Building an sustainable plastics innovation ecosystem in the Midwest (MN, IL)
NSF 引擎发展奖:在中西部(明尼苏达州、伊利诺伊州)建立可持续塑料创新生态系统
  • 批准号:
    2315247
  • 财政年份:
    2024
  • 资助金额:
    $ 23.31万
  • 项目类别:
    Cooperative Agreement
NSF Engines Development Award: Creating climate-resilient opportunities for plant systems (NC)
NSF 发动机开发奖:为工厂系统创造气候适应机会 (NC)
  • 批准号:
    2315399
  • 财政年份:
    2024
  • 资助金额:
    $ 23.31万
  • 项目类别:
    Cooperative Agreement
International Partnering Award: Using AI to assess senescence and mitochondrial morphology in calcifying VSMCs
国际合作奖:利用人工智能评估钙化 VSMC 的衰老和线粒体形态
  • 批准号:
    BB/Y513982/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.31万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - Durham University
2024 年开放访问区块奖 - 杜伦大学
  • 批准号:
    EP/Z531480/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.31万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - Goldsmiths College
2024 年开放获取区块奖 - 金史密斯学院
  • 批准号:
    EP/Z531509/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.31万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - John Innes Centre
2024 年开放访问区块奖 - 约翰·英尼斯中心
  • 批准号:
    EP/Z53156X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.31万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - London School of Economics & Pol Sci
2024 年开放获取区块奖 - 伦敦政治经济学院
  • 批准号:
    EP/Z531625/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.31万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - Oxford Brookes University
2024 年开放获取区块奖 - 牛津布鲁克斯大学
  • 批准号:
    EP/Z531728/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.31万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - The Francis Crick Institute
2024 年开放获取区块奖 - 弗朗西斯·克里克研究所
  • 批准号:
    EP/Z531844/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.31万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了