Analysis of Metabolic Capabilities of Prokaryotic Cells
原核细胞代谢能力分析
基本信息
- 批准号:10355463
- 负责人:
- 金额:$ 67.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AcetylationAcetyltransferaseAddressAnabolismAnimal ModelAntimicrobial ResistanceArchaeaAreaBacteriaBiochemistryBiophysicsBiotechnologyCell AgingCell membraneCellsCoenzymesComplexCrystallographyDeacetylaseDiabetes MellitusGeneticGoalsHealthHumanKnowledgeLifeLigandsLysineMalignant NeoplasmsMembrane BiologyMetabolicMetabolic ControlMetabolic stressMetabolismModelingMolecularMolecular BiologyNeurodegenerative DisordersNutrientObesityPathogenesisPathway interactionsPerformancePhysiologicalPhysiological ProcessesPhysiologyPost-Translational Protein ProcessingPrincipal InvestigatorProkaryotic CellsRegulationResearchRoleSalmonellaSalmonella entericaSirtuinsSpectrum AnalysisSystemTestingTransition ElementsVitamin B 12Workbasecobamamideenzyme pathwayexperimental studyhuman pathogenin vivoinnovationmicrobialmicroorganismpathogenprogramsprotein functionresponseribosidesingle moleculestructural biologytool
项目摘要
Program Director/Principal Investigator (Last, First, Middle): Escalante, Jorge C.
PROJECT SUMMARY/ABSTRACT
This MIRA proposal brings together two fields of prokaryotic metabolism and physiology that the PI’s group
has contributed extensively to. The first is the assembly of the structurally complex coenzyme B12 (CoB12), and
the second one is the regulation of protein function by lysine acetylation in response to metabolic stress.
Previous work by the PI’s group in these areas has resulted in the discovery of new enzymes and pathways,
and has established fundamental physiologic paradigms that apply to cells of all domains of life.
We have learned a great deal about how the complex coenzyme B12 is made, and yet, gaps in our knowledge
about its assembly remain. Although the remaining gaps are challenging to solve, recent breakthroughs in our
group have generated the tools to address these questions and advance our understanding of the
physiological integration of CoB12 biosynthesis in microorganisms of societal importance. We will investigate
how the lower ligand base of CoB12 is synthesized and activated to its riboside in human pathogens, how
vitamin B12 is converted to CoB12 in several Gram-positive pathogens, and why the last steps of the pathway
occur at the cell membrane in all CoB12 producers known to date. Most of the proposed work will be performed
in Salmonella enterica because of our deep knowledge of CoB12 biosynthesis in this bacterium, and the
sophisticated genetic system available to do in vivo work. We will also use Salmonella to establish the function
of heterologous, putative CoB12 biosynthetic functions in other bacteria and archaea.
We will continue to investigate the role of lysine acetylation in the control of metabolic stress. Lysine
acetylation is a posttranslational modification of profound relevance to human health and biotechnology. The
impact of this regulatory mechanism on human cell aging and cancer, neurodegenerative diseases, diabetes,
obesity, antimicrobial resistance, microbial pathogenesis, and other research areas of societal relevance
emphasizes the need to continue advancing this field of research. Fundamental questions about lysine
acetylation remain unanswered. The proposed work will investigate new role(s) of prokaryotic sirtuin
deacetylases in prokaryotic physiology, and will continue to elucidate the functions and physiological roles of
acetyltransferases in Gram-negative and Gram-positive human pathogens. Our findings obtained from
experiments performed with prokaryotic model organisms will inform how the system may work in higher forms
of life.
A powerful, innovative combination of approaches, including transition metal spectroscopy, structural biology
(crystallography), biochemistry, molecular biology, in vivo genetics, physiology, single-molecule biophysics,
and system-wide analyses will be applied during the performance of the proposed work. We will collaborate
with experts in the fields of spectroscopy, crystallography, molecular biophysics, and membrane biology to
provide comprehensive, rigorous testing of hypotheses and working models.
OMB No. 0925-0001/0002 (Rev. 03/16 Approved Through 10/31/2018) Page Continuation Format Page
项目负责人/主要研究者(最后,第一,中间):Escalante,Jorge C.
项目总结/摘要
MIRA的建议将原核生物代谢和生理学两个领域结合在一起,
做出了广泛的贡献。第一个是结构复杂的辅酶B12(CoB 12)的组装,
第二种是赖氨酸乙酰化对蛋白质功能的调节。
PI小组在这些领域的先前工作已经发现了新的酶和途径,
并建立了适用于所有生命领域的细胞的基本生理学范式。
我们已经了解了很多关于复杂的辅酶B12是如何产生的,然而,我们的知识空白
关于它的集会仍然存在。虽然剩余的差距是具有挑战性的解决,最近的突破,在我们的
小组已经产生了解决这些问题的工具,并促进了我们对
CoB 12生物合成在具有社会重要性的微生物中的生理整合。我们将调查
在人类病原体中,CoB 12的较低配体碱基是如何合成和激活其核苷的,
维生素B12在几种革兰氏阳性病原体中转化为CoB 12,以及为什么该途径的最后一步
在迄今为止已知的所有CoB 12生产者中发生在细胞膜上。大部分拟议的工作将在
由于我们对这种细菌中CoB 12生物合成的深入了解,以及
复杂的遗传系统可以在体内工作。我们还将使用沙门氏菌来建立功能
在其他细菌和古细菌中的异源,推定的CoB 12生物合成功能。
我们将继续研究赖氨酸乙酰化在代谢应激控制中的作用。赖氨酸
乙酰化是一种与人类健康和生物技术密切相关的翻译后修饰。的
这种调节机制对人类细胞衰老和癌症、神经退行性疾病、糖尿病
肥胖、抗菌素耐药性、微生物发病机理和其他社会相关研究领域
强调需要继续推进这一研究领域。赖氨酸的基本问题
乙酰化仍然没有答案。本研究将探讨原核sirtuin的新功能
脱乙酰酶在原核生物生理学,并将继续阐明功能和生理作用,
革兰氏阴性和革兰氏阳性人类病原体中的乙酰转移酶。我们的研究结果来自
用原核生物模式生物进行的实验将告诉我们该系统如何在更高的形式下工作
生命
一个强大的,创新的方法组合,包括过渡金属光谱学,结构生物学
(晶体学),生物化学,分子生物学,体内遗传学,生理学,单分子生物物理学,
在开展拟议工作期间,将进行全系统分析。我们将合作
与光谱学、晶体学、分子生物物理学和膜生物学领域的专家一起,
对假设和工作模型进行全面、严格的测试。
OMB编号0925-0001/0002(2016年3月修订版,批准至2018年10月31日)
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JORGE C ESCALANTE其他文献
JORGE C ESCALANTE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JORGE C ESCALANTE', 18)}}的其他基金
Analysis of Metabolic Capabilities of Prokaryotic Cells
原核细胞代谢能力分析
- 批准号:
10574503 - 财政年份:2019
- 资助金额:
$ 67.95万 - 项目类别:
METHANOCALDOCOCCUS JANNASCHII COBY (MJ1117)
甲烷热球菌 JANNASCHII COBY (MJ1117)
- 批准号:
8361156 - 财政年份:2011
- 资助金额:
$ 67.95万 - 项目类别:
METHANOCALDOCOCCUS JANNASCHII COBY (MJ1117)
甲烷热球菌 JANNASCHII COBY (MJ1117)
- 批准号:
8168943 - 财政年份:2010
- 资助金额:
$ 67.95万 - 项目类别:
METHANOCALDOCOCCUS JANNASCHII COBY (MJ1117)
甲烷热球菌 JANNASCHII COBY (MJ1117)
- 批准号:
7954616 - 财政年份:2009
- 资助金额:
$ 67.95万 - 项目类别:
TRAINING IN THE USE OF BRUKER AND VARIAN SPECTROMETERS AND NMR
布鲁克和瓦里安光谱仪和核磁共振的使用培训
- 批准号:
7954617 - 财政年份:2009
- 资助金额:
$ 67.95万 - 项目类别:
METHANOCALDOCOCCUS JANNASCHII COBY (MJ1117)
甲烷热球菌 JANNASCHII COBY (MJ1117)
- 批准号:
7721650 - 财政年份:2008
- 资助金额:
$ 67.95万 - 项目类别:
DBP-C: ACETYLATION/DEACETYLATION PATHWAYS IN BACTERIA
DBP-C:细菌中的乙酰化/脱乙酰化途径
- 批准号:
7724692 - 财政年份:2008
- 资助金额:
$ 67.95万 - 项目类别:
TRAINING IN THE USE OF BRUKER AND VARIAN SPECTROMETERS AND NMR
布鲁克和瓦里安光谱仪和核磁共振的使用培训
- 批准号:
7721652 - 财政年份:2008
- 资助金额:
$ 67.95万 - 项目类别:
相似海外基金
Dissecting out differential molecular phenotypes across Lysine(K) AcetylTransferase mutations in mouse development
剖析小鼠发育过程中赖氨酸(K)乙酰转移酶突变的差异分子表型
- 批准号:
10727966 - 财政年份:2023
- 资助金额:
$ 67.95万 - 项目类别:
Targeting lysine acetyltransferase MOF/KAT8 in lung cancer
靶向赖氨酸乙酰转移酶 MOF/KAT8 在肺癌中的作用
- 批准号:
10601761 - 财政年份:2023
- 资助金额:
$ 67.95万 - 项目类别:
Roles of lysine acetyltransferase 6 complexes in cerebral development and neurodevelopmental disorders
赖氨酸乙酰转移酶 6 复合物在大脑发育和神经发育障碍中的作用
- 批准号:
479754 - 财政年份:2023
- 资助金额:
$ 67.95万 - 项目类别:
Operating Grants
Defining the cell-type specific role of histone acetyltransferase KAT2a in nucleus accumbens D1 medium spiny neurons as a driver of cocaine use disorder
定义组蛋白乙酰转移酶 KAT2a 在伏隔核 D1 中型多棘神经元中作为可卡因使用障碍驱动因素的细胞类型特异性作用
- 批准号:
10679238 - 财政年份:2023
- 资助金额:
$ 67.95万 - 项目类别:
Examination of the Histone Acetyltransferase CBP in the Remodelling of Thermogenic Adipose Tissues
组蛋白乙酰转移酶 CBP 在生热脂肪组织重塑中的检测
- 批准号:
486467 - 财政年份:2022
- 资助金额:
$ 67.95万 - 项目类别:
Studentship Programs
Development of p300/CBP histone acetyltransferase inhibitors for oncogene-driven cancers
开发用于癌基因驱动癌症的 p300/CBP 组蛋白乙酰转移酶抑制剂
- 批准号:
10344246 - 财政年份:2022
- 资助金额:
$ 67.95万 - 项目类别:
Nuclear activity of carnitine acetyltransferase
肉毒碱乙酰转移酶的核活性
- 批准号:
RGPIN-2018-06089 - 财政年份:2022
- 资助金额:
$ 67.95万 - 项目类别:
Discovery Grants Program - Individual
Development of p300/CBP histone acetyltransferase inhibitors for oncogene-driven cancers
开发用于癌基因驱动癌症的 p300/CBP 组蛋白乙酰转移酶抑制剂
- 批准号:
10627744 - 财政年份:2022
- 资助金额:
$ 67.95万 - 项目类别:
Characterizing the role of the NuA3 histone acetyltransferase complex during transcription
表征 NuA3 组蛋白乙酰转移酶复合物在转录过程中的作用
- 批准号:
557615-2021 - 财政年份:2022
- 资助金额:
$ 67.95万 - 项目类别:
Postdoctoral Fellowships
Structural and functional studies of histone acetyltransferase complexes
组蛋白乙酰转移酶复合物的结构和功能研究
- 批准号:
RGPIN-2018-03951 - 财政年份:2022
- 资助金额:
$ 67.95万 - 项目类别:
Discovery Grants Program - Individual