Novel On-line PET Based Intra-Beam Range Verification and Delivery Optimization for Improved Particle Radiation Therapy
基于新型在线 PET 的束内范围验证和传输优化,以改进粒子放射治疗
基本信息
- 批准号:10355422
- 负责人:
- 金额:$ 27.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-02-09 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:Algorithmic SoftwareAlgorithmsAlpha ParticlesBeliefBiologicalBrainBudgetsClinicalClinical ResearchDevelopmentDoseEnsureFutureGoalsImageLeadMalignant neoplasm of brainMeasurementMeasuresMethodsMonte Carlo MethodNormal tissue morphologyOnline SystemsOrganOutcomeOutcomes ResearchPatient CarePatientsPerformancePhotonsPhysiologicalPositioning AttributePositron-Emission TomographyProblem SolvingProcessRadiationRadiation Dose UnitRadiation therapyResearchResearch Project GrantsResolutionRetreatmentRiskSystemTechnologyTestingTherapeuticTherapeutic EffectTimeTreatment EfficacyUncertaintybasecancer therapyclinical applicationflexibilityimage guidedimaging modalityimaging systemimprovedin vivo imaginginnovationinnovative technologiesnew technologynovelnovel strategiesparticleparticle beamparticle therapyphysical propertyprocess optimizationproton beamproton therapyprototyperadiotracersuccesstargeted treatmenttherapy outcometreatment planningtreatment sitetumor
项目摘要
PROJECT SUMMARY
There are inherent physical uncertainties with particle therapy (i.e. beam range uncertainty) which have
become major factors leading to large margins, thereby unnecessarily exposing additional dose to normal
tissues, and forcing clinicians taking overly conservative treatment plans to restrict the dose to tumor or
avoiding advantageous beam angles to ensure sparing of critical organs at risk. It is critically important to
overcome this impediment in order to dramatically enhance particle therapy outcomes and achieve its full
clinical benefits. The goal of this research project is to develop an innovative PET image-based on-line
verification of proton therapy for brain cancer treatment instead of the current off-line method in order to
directly measure the potential deviation of actual proton beam range from that predicted by the treatment plan
before the start of treatment. In this project, we challenge the conventional belief and propose a unique
approach of using part of the therapy beams for imaging, thus overcoming the long-standing technical obstacle
for achieving the on-line PET imaging method. We will pursue three specific aims to achieve the goal of this
project: 1) Develop and evaluate a brain PET capable for desired on-line imaging; 2) Develop and evaluate
algorithms and software that will select probing beams for range measurement and enable range-shift
compensated beam delivery; 3) Establish and improve the on-line PET based range measurement and
adaptive particle therapy. The success of this project will fill a critical technical gap and make the on-line PET
based range measurement and adaptive particle therapy clinically practical for the first time. It could shift
clinical study with a new image-based particle therapy paradigm, which will significantly improve the particle
beam targeting, enable new and better treatment plan, and improve the therapy efficacy and patient care. The
outcome of this project will also pave the way to develop similar technology for whole-body on-line PET
imaging and adaptive particle therapy applications.
项目摘要
粒子治疗存在固有的物理不确定性(即射束范围不确定性),
成为导致较大裕度的主要因素,从而不必要地将额外剂量暴露于正常
组织,并迫使临床医生采取过于保守的治疗计划,以限制剂量的肿瘤或
避免有利的射束角度以确保免于危及关键器官。至关重要的是,
克服这一障碍,以显着提高粒子治疗的结果,并实现其充分
临床获益。本研究项目的目标是开发一种创新的PET图像为基础的在线
验证质子疗法治疗脑癌,而不是目前的离线方法,
直接测量实际质子束范围与治疗计划预测范围的潜在偏差
在治疗开始之前。在这个项目中,我们挑战传统的信念,并提出了一个独特的
使用部分治疗光束进行成像的方法,从而克服了长期存在的技术障碍
用于实现在线PET成像方法。我们将追求三个具体目标,以实现这一目标
项目:1)开发和评估能够进行所需在线成像的脑PET; 2)开发和评估
算法和软件将选择探测光束进行距离测量,并实现距离偏移
3)建立和改进基于PET的在线距离测量,
自适应粒子疗法该项目的成功将填补一个关键的技术空白,使在线PET
基于距离测量和自适应粒子治疗的临床实践的第一次。它可能会转移
一个新的基于图像的粒子治疗范例的临床研究,这将显着提高粒子
波束靶向,使新的和更好的治疗计划,并提高治疗效果和病人护理。的
该项目的成果也将为开发用于全身在线PET的类似技术铺平道路
成像和自适应粒子治疗应用。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robustness study of noisy annotation in deep learning based medical image segmentation.
- DOI:10.1088/1361-6560/ab99e5
- 发表时间:2020-08-27
- 期刊:
- 影响因子:3.5
- 作者:Yu S;Chen M;Zhang E;Wu J;Yu H;Yang Z;Ma L;Gu X;Lu W
- 通讯作者:Lu W
Mid-range probing-towards range-guided particle therapy.
- DOI:10.1088/1361-6560/aaca1b
- 发表时间:2018-06-27
- 期刊:
- 影响因子:3.5
- 作者:Chen M;Zhong Y;Shao Y;Jiang S;Lu W
- 通讯作者:Lu W
gPET: a GPU-based, accurate and efficient Monte Carlo simulation tool for PET.
GPET:用于PET的基于GPU,准确有效的蒙特卡洛模拟工具。
- DOI:10.1088/1361-6560/ab5610
- 发表时间:2019-12-13
- 期刊:
- 影响因子:3.5
- 作者:
- 通讯作者:
Global optimization for spot-based treatment planning.
全球优化基于现场的治疗计划。
- DOI:10.1002/mp.15890
- 发表时间:2022-12
- 期刊:
- 影响因子:3.8
- 作者:Chen, Mingli;Gu, Xuejun;Lu, Weiguo
- 通讯作者:Lu, Weiguo
Real-time marker-less tumor tracking with TOF PET:in silicofeasibility study.
- DOI:10.1088/1361-6560/ac6d9f
- 发表时间:2022-05-26
- 期刊:
- 影响因子:3.5
- 作者:Cheng, Xinyi;Yang, Dongxu;Zhong, Yuncheng;Shao, Yiping
- 通讯作者:Shao, Yiping
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Weiguo Lu其他文献
Weiguo Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Weiguo Lu', 18)}}的其他基金
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 27.39万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 27.39万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 27.39万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 27.39万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 27.39万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 27.39万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 27.39万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 27.39万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 27.39万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 27.39万 - 项目类别:
Research Grant