Data Management and Analysis Core

数据管理与分析核心

基本信息

  • 批准号:
    10354694
  • 负责人:
  • 金额:
    $ 17.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY The primary objective of the Sample and Data Management Core (DMAC) is to provide statistical support and data management and storage capabilities to all components of the University of Louisville Superfund Research Center (ULSRC). The functions of the Core are matched to the needs of each project and cover a full range of services from collaboration and routine service to protocol preparation to procedural review and oversight. The Core will provide two main services: it will establish a repository for the long-term storage and archiving of data; and it will assist Center investigators in the statistical analysis of their results. The core will assure the authenticity and quality of these specimens and it will prepare these samples for long-term storage, or dispense samples as needed. The Core will also provide scientifically valid and rigorous statistical analysis of data and support the development of innovative methods to enhance the basic and translational research efforts of Center investigators. It will provide state-of-the-art biostatistics and bioinformatics expertise and analytical support. Core biostatisticians will also develop new statistical methods, such as quantitative risk assessment models, multipollutant exposure analysis, and land-use regression models, for estimating cardiometabolic disease risk in exposed populations and for the analysis and evaluation of exposures and health effects. In collaboration with other projects and cores, DMAC, statisticians will harmonize the data by defining standards (e.g., creating searchable data dictionaries and defining variables relevant for each project. In the next funding cycle, we will continue to use these procedures. The core will serve as a unique educational resource for training graduate students, post-doctoral fellows, residents and junior faculty and in collaboration with the Training and Administration Cores. This Core will allow Center investigators easy access to high quality, centralized data management and statistical services, and thereby will strengthen the organizational cohesion of the Center. This comprehensive and integrated service permits one or more biostatisticians to be involved from the initial planning stage of a project (when statistical consultation is most beneficial) throughout its implementation, analysis and completion. The Core will provide a stable and collegial environment that fosters long-term working relationships between biostatisticians and investigators, and continues to promote sophisticated approaches to experimental design and analysis. The biostatisticians of this Core are knowledgeable about clinical research and have broad expertise in statistical applications for epidemiological investigations, clinical trials, pre-clinical studies, and prevention and control research. Their interdisciplinary interactions with basic scientists and clinical investigators will add a new dimension to the interpretation of experimental results, one that is only possible when collaborators share a mutual appreciation of problems and issues.
项目摘要 样本和数据管理核心(DMAC)的主要目标是提供统计支持, 路易斯维尔大学超级基金研究的所有组成部分的数据管理和存储能力 中心(ULSRC)。核心的功能与每个项目的需要相匹配,并涵盖全方位的 从协作和常规服务到方案准备再到程序审查和监督。的 核心方案将提供两项主要服务:它将建立一个长期储存和归档数据的储存库; 它将帮助中心研究人员对结果进行统计分析。核心将确保真实性 这些样本的质量,它将准备这些样本长期储存,或分配样本, needed.核心还将提供科学有效和严格的数据统计分析,并支持 开发创新方法,以加强中心的基础和转化研究工作 investigators.它将提供最先进的生物统计学和生物信息学专门知识和分析支助。核心 生物统计学家还将开发新的统计方法,如定量风险评估模型, 多污染物暴露分析和土地使用回归模型,用于估计 用于分析和评价接触情况和健康影响。协同 其他项目和核心,DMAC,统计人员将通过定义标准(例如,创建 可搜索的数据字典和定义与每个项目相关的变量。在下一个融资周期,我们将 继续使用这些程序。核心将作为培养研究生的独特教育资源 学生,博士后研究员,居民和初级教师,并与培训和 管理核心。该核心将允许中心调查人员轻松访问高质量的集中数据 管理和统计服务,从而将加强中心的组织凝聚力。这 全面和综合的服务允许一个或多个生物统计学家参与从最初的规划 在项目的整个执行、分析和评估阶段(统计咨询最有益处的阶段), 建成核心将提供一个稳定和合议的环境,促进长期的工作关系 在生物统计学家和研究人员之间,并继续促进复杂的方法,以实验 设计和分析。该核心的生物统计学家了解临床研究,并具有广泛的 流行病学调查,临床试验,临床前研究的统计应用专业知识, 防治研究。他们与基础科学家和临床研究人员的跨学科互动 将为实验结果的解释增加一个新的维度,只有当合作者 对问题和议题有共同的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shesh N. Rai其他文献

EVALUATION OF MULTIPLE CORONARY ANGIOGRAPHIC CHARACTERISTICS FOR THE DIAGNOSIS OF ACUTE CORONARY THROMBUS
  • DOI:
    10.1016/s0735-1097(15)61123-8
  • 发表时间:
    2015-03-17
  • 期刊:
  • 影响因子:
  • 作者:
    Alok Ravindra Amraotkar;Patrick Trainor;Charles W. Hargis;Ilya Chernyauskiy;Shesh N. Rai;Aruni Bhatnagar;Andrew DeFilippis
  • 通讯作者:
    Andrew DeFilippis
ASCVD RISK PREDICTION AMONG DIVERSE RACIAL POPULATIONS - POOLED COHORT EQUATIONS (PCE) VS. CORONARY ARTERY CALCIUM SCORING (CACS)
  • DOI:
    10.1016/s0735-1097(24)03914-7
  • 发表时间:
    2024-04-02
  • 期刊:
  • 影响因子:
  • 作者:
    Muhammad Umer;Afolasayo Aromiwura;Usman Sagheer;S. Hammad Jafri;Matthew Peters;Sagar Bhandari;Shesh N. Rai;Ibtihaj Fughhi;Maryta Sztukowska;Dinesh Kalra
  • 通讯作者:
    Dinesh Kalra
Proceedings of the 16th Annual UT-KBRIN Bioinformatics Summit 2016: bioinformatics
  • DOI:
    10.1186/s12859-017-1781-y
  • 发表时间:
    2017-10-13
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Eric C. Rouchka;Julia H. Chariker;David A. Tieri;Juw Won Park;Shreedharkumar Rajurkar;Vikas Singh;Nishchal K. Verma;Yan Cui;Mark Farman;Bradford Condon;Neil Moore;Jerzy Jaromczyk;Jolanta Jaromczyk;Daniel Harris;Patrick Calie;Eun Kyong Shin;Robert L. Davis;Arash Shaban-Nejad;Joshua M. Mitchell;Robert M. Flight;Qing Jun Wang;Richard M. Higashi;Teresa W-M Fan;Andrew N. Lane;Hunter N. B. Moseley;Liangqun Lu;Bernie J Daigle;Xi Chen;Andrey Smelter;Hunter N. B. Moseley;Jerzy W. Jaromczyk;Mark Farman;Li Chen;Neil Moore;Bailey K. Phan;Nathaniel J. Serpico;Ethan G. Toney;Caroline E. Melton;Jennifer R. Mandel;Bernie J. Daigle;Hao Chen;Kazi I. Zaman;Ramin Homayouni;Patrick J. Trainor;Samantha M. Carlisle;Andrew P. DeFilippis;Shesh N. Rai
  • 通讯作者:
    Shesh N. Rai
Mixed‐scale models for survival/sacrifice experiments
生存/牺牲实验的混合规模模型
  • DOI:
    10.2307/3315066
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shesh N. Rai;David E. Matthews;Daniel Krewski
  • 通讯作者:
    Daniel Krewski
Genome-Wide Methylome and Transcriptome Profiling of Acute Myeloid Leukemia Derived Bone Marrow Mesenchymal Cells Identify Age Group Specific Biological Pathway Dysregulation in the Bone Marrow Microenvironment of AML
  • DOI:
    10.1182/blood-2023-189973
  • 发表时间:
    2023-11-02
  • 期刊:
  • 影响因子:
  • 作者:
    Amina Abdul-Aziz;James R. Lerma;Amy Kovacs;Shesh N. Rai;Jianmin Pan;Liang Niu;Alice Mims;Christopher C. Oakes;John C. Byrd;Erin K. Hertlein
  • 通讯作者:
    Erin K. Hertlein

Shesh N. Rai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shesh N. Rai', 18)}}的其他基金

Biostatistics and Informatics Facility Core
生物统计和信息学设施核心
  • 批准号:
    10217138
  • 财政年份:
    2020
  • 资助金额:
    $ 17.17万
  • 项目类别:
Data Management and Analysis Core
数据管理与分析核心
  • 批准号:
    10693813
  • 财政年份:
    2017
  • 资助金额:
    $ 17.17万
  • 项目类别:
Sample and Data Management Core
样本和数据管理核心
  • 批准号:
    9260443
  • 财政年份:
  • 资助金额:
    $ 17.17万
  • 项目类别:
Biostatistics and Informatics Facility Core
生物统计和信息学设施核心
  • 批准号:
    9917944
  • 财政年份:
  • 资助金额:
    $ 17.17万
  • 项目类别:
Sample and Data Management Core
样本和数据管理核心
  • 批准号:
    9904684
  • 财政年份:
  • 资助金额:
    $ 17.17万
  • 项目类别:

相似海外基金

The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
  • 批准号:
    EP/Z000920/1
  • 财政年份:
    2025
  • 资助金额:
    $ 17.17万
  • 项目类别:
    Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
  • 批准号:
    FT230100276
  • 财政年份:
    2024
  • 资助金额:
    $ 17.17万
  • 项目类别:
    ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
  • 批准号:
    MR/X024261/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.17万
  • 项目类别:
    Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
  • 批准号:
    DE240100388
  • 财政年份:
    2024
  • 资助金额:
    $ 17.17万
  • 项目类别:
    Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
  • 批准号:
    2889694
  • 财政年份:
    2023
  • 资助金额:
    $ 17.17万
  • 项目类别:
    Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
  • 批准号:
    2842926
  • 财政年份:
    2023
  • 资助金额:
    $ 17.17万
  • 项目类别:
    Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
  • 批准号:
    NC/X001644/1
  • 财政年份:
    2023
  • 资助金额:
    $ 17.17万
  • 项目类别:
    Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
  • 批准号:
    2337595
  • 财政年份:
    2023
  • 资助金额:
    $ 17.17万
  • 项目类别:
    Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
  • 批准号:
    2232190
  • 财政年份:
    2023
  • 资助金额:
    $ 17.17万
  • 项目类别:
    Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
  • 批准号:
    23K17514
  • 财政年份:
    2023
  • 资助金额:
    $ 17.17万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了