Real-world outcomes of proliferative diabetic retinopathy
增殖性糖尿病视网膜病变的现实结果
基本信息
- 批准号:10191673
- 负责人:
- 金额:$ 25.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAlgorithmsAnatomyBackground Diabetic RetinopathyBiometryBlindnessCaliforniaCaringClassificationClinicalClinical ResearchClinical Trials DesignClinical effectivenessCodeDataData AnalyticsData SetDatabasesDevelopmentDiabetic RetinopathyDiagnosisDiseaseEffectivenessElectronic Health RecordEnvironmentEthnic OriginEyeEye diseasesFoundational SkillsFoundationsFundingFutureGeneral HospitalsGoalsHealth InsuranceHealthcareHospitalsICD-9ImageInfrastructureInjectionsIntelligenceInterventionKnowledgeLight CoagulationManualsMeasuresMentorsMentorshipMethodsModelingNatural Language ProcessingObservational StudyOphthalmic examination and evaluationOphthalmologistOphthalmologyOutcomeOutcome StudyOutpatientsParticipantPatient RecruitmentsPatientsPerformancePharmaceutical PreparationsPhysicians&apos OfficesPragmatic clinical trialProspective StudiesProviderPublishingRaceRandomized Controlled TrialsRegistriesReportingResearchResearch PersonnelRetrospective StudiesRisk FactorsSan FranciscoStructureSystemTechniquesTestingTextThe SunTimeTrainingTreatment EffectivenessUnited StatesUniversitiesVascular Endothelial Growth FactorsVisionVisualagedbasebiomedical informaticsclinical data warehousecomparison interventioncost effectivenessdesigndiabeticfollow-uphealth disparityhigh riskimprovedimproved outcomeinnovationlow socioeconomic statusmedication compliancenovelpredictive modelingpreventprimary outcomeproliferative diabetic retinopathyrisk stratificationroutine carestructured datatooltreatment as usualunstructured data
项目摘要
PROJECT SUMMARY:
Real-world outcomes of proliferative diabetic retinopathy
Vision loss from diabetic retinopathy remains the leading cause of preventable blindness in working-aged
adults in the United States (US). Advanced diabetic retinopathy is referred to as proliferative diabetic
retinopathy (PDR). In many patients, blindness associated with PDR can be prevented with appropriate and
timely diagnosis and treatment. Unfortunately, some patients at high risk for PDR are not receiving adequate
eye care. More knowledge is needed about PDR outcomes in a real-world setting, and the differences between
published study outcomes and real-world effectiveness. Electronic health records (EHRs) are used in nearly
90% of outpatient physician offices and can be a powerful tool for studying PDR in a real-world setting. The
goal of this proposal is to develop and validate EHR-based methods to improve outcomes in PDR. The study
aims are: (1) to classify patients with PDR in the EHR system using an automated method that incorporates
structured (e.g., diagnosis code, medications, labs) and unstructured data (e.g., clinical notes), (2) to predict
the progression of non-proliferative diabetic retinopathy to PDR using a forecasting model with time-varying
covariates, and (3) to determine the real-world effectiveness of treatments for PDR in a large nationwide eye
dataset. The study will utilize data from the University of California San Francisco’s (UCSF) De-Identified
Clinical Data Warehouse, a de-identified EHR with over 1 million patients that has available eye exam
information, and the Intelligent Research in Sight (IRIS) registry, a nationwide comprehensive eye database
that includes data from over 15,000 eye providers in the US with over 1 million patients with PDR. The
innovative methods and tools from this study can be applied to other eye conditions to facilitate future EHR-
based clinical studies in ophthalmology. The candidate, Dr. Catherine Sun is an ophthalmologist whose long-
term goal is to study real-world clinical outcomes in ophthalmology by conducting EHR-based pragmatic
clinical trials and using large-scale EHR data. While she possesses the foundational skills, additional mentored
training and coursework in data analytics, biomedical informatics, biostatistics, and advanced clinical trial
design and implementation will help her reach her goals. Her outstanding mentorship team of primary mentor
Dr. Nisha Acharya and co-mentors Dr. Travis Porco and Dr. Joshua Stein, and the exceptional environment of
the Department of Ophthalmology and the F.I. Proctor Foundation at UCSF will support Dr. Sun’s development
into an R01-funded independent investigator.
项目概要:
增殖性糖尿病视网膜病变的真实结局
糖尿病视网膜病变导致的视力丧失仍然是工作年龄人群中可预防失明的主要原因。
成年人在美国(US)。晚期糖尿病视网膜病变被称为增殖性糖尿病
视网膜病变(PDR)。在许多患者中,与PDR相关的失明可以通过适当的治疗来预防,
及时诊断和治疗。不幸的是,一些PDR高危患者没有得到足够的治疗,
眼部护理需要更多关于真实世界环境中PDR结果的知识,以及
发表的研究结果和真实世界的有效性。电子健康记录(EHR)已在近
90%的门诊医生办公室,可以成为在现实世界中研究PDR的强大工具。的
本提案的目标是开发和验证基于EHR的方法,以改善PDR的结果。研究
目的是:(1)在EHR系统中使用自动化方法对PDR患者进行分类,
结构化(例如,诊断代码、药物、实验室)和非结构化数据(例如,临床笔记),(2)预测
非增殖性糖尿病视网膜病变进展为PDR的预测模型,
协变量,和(3)确定在全国范围内的大眼睛中治疗PDR的真实有效性
数据集。该研究将利用加州大学弗朗西斯科分校(UCSF)的数据去识别
临床数据仓库,一个去识别的EHR,拥有超过100万名患者,可进行眼科检查
信息,以及智能视力研究(IRIS)登记处,一个全国性的综合眼睛数据库
这包括来自美国超过15,000家眼科提供者的数据,其中有超过100万名PDR患者。的
这项研究的创新方法和工具可以应用于其他眼部疾病,以促进未来的EHR-
基于眼科临床研究。候选人Catherine Sun博士是一位眼科医生,长期-
长期目标是通过进行基于EHR的务实研究,
临床试验和使用大规模EHR数据。虽然她拥有基本技能,但额外的指导
数据分析、生物医学信息学、生物统计学和高级临床试验方面的培训和课程
设计和实施将帮助她实现目标。她的杰出导师团队
博士Nisha Acharya和共同导师Travis Porco博士和约书亚斯坦博士,以及
眼科和F.I.加州大学旧金山分校的普罗克特基金会将支持孙博士的发展
R 01资助的独立调查员
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Catherine Qing Sun其他文献
Catherine Qing Sun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Catherine Qing Sun', 18)}}的其他基金
Real-world outcomes of proliferative diabetic retinopathy
增殖性糖尿病视网膜病变的现实结果
- 批准号:
10624272 - 财政年份:2021
- 资助金额:
$ 25.22万 - 项目类别:
Real-world outcomes of proliferative diabetic retinopathy
增殖性糖尿病视网膜病变的现实结果
- 批准号:
10396571 - 财政年份:2021
- 资助金额:
$ 25.22万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 25.22万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 25.22万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 25.22万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 25.22万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 25.22万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 25.22万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 25.22万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 25.22万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 25.22万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 25.22万 - 项目类别:
Continuing Grant














{{item.name}}会员




