Digital Biomarkers of Post-traumatic Osteoarthritis: Toward Precision Rehabilitation

创伤后骨关节炎的数字生物标志物:迈向精准康复

基本信息

  • 批准号:
    10357435
  • 负责人:
  • 金额:
    $ 57.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT It is widely accepted that failure to restore pre-injury biomechanics after anterior cruciate ligament reconstruction (ACL-R) surgery is one of the key contributing factors to the high prevalence of post-traumatic osteoarthritis (PTOA). Precision rehabilitation, which refers to the delivery of the right feedback to the right patient at the right time, is now a feasible approach for PTOA prevention given recent advances in wearable sensing and computer vision technologies. Flexible and unobtrusive skin patches can objectively quantify movement out of the clinic and deliver real-time haptic feedback, while simple videos from smartphones can assess physical therapy quality and deliver corrective visual or auditory feedback. To effectively apply emerging smart-health technologies toward PTOA prevention, the multi-modal and multivariate data produced by these sensors must be distilled to identify digital biomarkers of PTOA that can be targeted with biofeedback therapy in the future. Accordingly, the central objective of this proposed work is to determine if characteristics of gait extracted from video and wearable sensors (digital biomarkers) can predict longitudinal changes in cartilage microstructure (early PTOA) extracted from quantitative Magnetic Resonance Imaging (qMRI). Our central hypothesis is that future risk of PTOA can be predicted in the first few months after surgery using passively collected data from wearable sensors and video. This hypothesis is supported by our previous work on pre-arthritic subjects, where we demonstrated that wearable sensing data could predict detrimental changes in cartilage microstructure that are indicative of OA risk. To accomplish the overall objective of this work, physical therapy, natural environment ambulation, and cartilage health will be monitored longitudinally. Exercise correctness during pre- and post-operative physical therapy will be quantified using computer vision and machine learning algorithms. Out-of-lab movement will be monitored at baseline (3 weeks), 3, and 9 months after surgery with epidermal sensors placed on the thighs and shanks. Quantitative MRI data will be collected at baseline (3 weeks), 3 and 18 months after the surgery. Specifically, we will determine (1) if gait symmetry restoration measured by wearable sensors can predict qMRI changes up to 18 months post-surgery and (2) if physical therapy quality, to the extent that is quantifiable with passive computer vision algorithms, can predict gait symmetry restoration up to 9 months post-surgery. This work is innovative because it breaks with the current norms of studying the role of biomechanics in PTOA in the laboratory. Instead, we will use wearable sensing, computer vision, and machine learning to generate previously unavailable knowledge on the role of natural environment biomechanics. If successful, this work could enable personalized, technology- assisted rehabilitation—a paradigm shift in clinical care. Additionally, the discovery of new PTOA biomarkers could improve the efficiency of clinical trials for new surgical techniques, while the proposed framework is also extensible to the study and prevention of primary OA, and possibly other orthopaedic conditions.
项目概要/摘要 人们普遍认为,前十字韧带术后无法恢复受伤前的生物力学 重建(ACL-R)手术是创伤后高患病率的关键因素之一 骨关节炎(PTOA)。精准康复,是指向正确的人传递正确的反馈 鉴于可穿戴设备的最新进展,现在已成为预防 PTOA 的可行方法 传感和计算机视觉技术。灵活且不显眼的皮肤斑块可以客观地量化 走出诊所并提供实时触觉反馈,而来自智能手机的简单视频可以 评估物理治疗质量并提供纠正性视觉或听觉反馈。为了有效地应用 用于预防 PTOA 的新兴智能健康技术,产生的多模式和多变量数据 必须对这些传感器采集的数据进行蒸馏,以识别可通过生物反馈靶向的 PTOA 数字生物标志物 未来的治疗。因此,这项拟议工作的中心目标是确定特征是否 从视频和可穿戴传感器(数字生物标记)中提取的步态可以预测纵向变化 从定量磁共振成像 (qMRI) 中提取的软骨微观结构(早期 PTOA)。我们的 中心假设是,可以在手术后的头几个月内通过以下方法预测未来 PTOA 的风险: 从可穿戴传感器和视频被动收集数据。这个假设得到了我们之前的工作的支持 关于关节炎前的受试者,我们证明可穿戴传感数据可以预测有害的变化 表明 OA 风险的软骨微观结构。为完成本次工作的总体目标, 物理治疗、自然环境行走和软骨健康将得到纵向监测。 将使用计算机视觉量化术前和术后物理治疗期间的运动正确性 和机器学习算法。将在基线(3 周)、第 3 周和第 9 周监测实验室外运动 手术后几个月,表皮传感器放置在大腿和小腿上。定量 MRI 数据将 在基线(3 周)、手术后 3 个月和 18 个月收集。具体来说,我们将确定(1)步态是否 通过可穿戴传感器测量的对称性恢复可以预测术后 18 个月内的 qMRI 变化 (2) 物理治疗质量(在可通过被动计算机视觉算法量化的范围内)是否可以 预测术后 9 个月内步态对称性的恢复。这项工作之所以具有创新性,是因为它突破了 目前在实验室研究生物力学在 PTOA 中的作用的规范。相反,我们将使用 可穿戴传感、计算机视觉和机器学习,以生成以前无法获得的知识 自然环境生物力学的作用。如果成功,这项工作可以实现个性化、技术- 辅助康复——临床护理的范式转变。此外,新的 PTOA 生物标志物的发现 可以提高新手术技术的临床试验效率,同时所提出的框架也 可扩展到原发性 OA 以及可能的其他骨科疾病的研究和预防。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eni Halilaj其他文献

Eni Halilaj的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了