Kinase regulation of trafficking at the Toxoplasma intravacuolar network
弓形虫液泡内网络运输的激酶调节
基本信息
- 批准号:10356113
- 负责人:
- 金额:$ 40.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-17 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAnimal ModelAnimalsAntigen PresentationBindingBiochemicalBiogenesisBiophysical ProcessBloodCaliberCellsCessation of lifeChemicalsComplexComplicationCryptosporidiosisCytoplasmic GranulesCytosolDataDevelopmentDiseaseElectron MicroscopyFoundationsFutureGeneticGoalsHumanImmuneImmunocompromised HostIn VitroIndividualInfectionIngestionInvadedKnowledgeLeadLifeMalariaMass Spectrum AnalysisMediatingMembraneMembrane ProteinsMethodsMolecularMolecular ChaperonesMolecular GeneticsMolecular WeightMorphologyMutagenesisMutateNegative StainingNutrientOrganellesParasitesParasitic DiseasesPhosphorylationPhosphorylation SitePhosphotransferasesPhysiologyPlanet EarthProtein AnalysisProtein KinaseProteinsRecombinantsRegulationRoleSiteStructural ModelsStructureSystemTechniquesTestingToxoplasmaToxoplasma gondiiToxoplasmosisVacuoleVesicleVirulencebiochemical modelbiophysical techniquescell typecrosslinkexperimental studyhuman diseaseimmunosuppressedinnovationintermolecular interactionmutantnew therapeutic targetpathogenprotein complexprotein protein interactionreconstitutionthree dimensional structuretraffickingunilamellar vesicleuptakevirtual
项目摘要
PROJECT SUMMARY/ABSTRACT
Toxoplasma gondii has the remarkable ability to infect virtually any cell type of almost all warm-blooded
animals and is arguably the most successful parasite on earth, having infected an estimated one-third of
humans globally. While initial infection typically resolves without complication, the parasite is able to persist
for the life of its host, and can re-emerge in the immunocompromised and immunosuppressed to cause fatal
disease. Toxoplasma, like other apicomplexan parasites, must invade a host cell to survive and replicate.
Once inside a host cell, the parasite survives and replicates within a specialized organelle called the
parasitophorous vacuole. Disruption of the vacuole results in parasite death, and the parasite secretes a
battery of proteins into the vacuole to facilitate its biogenesis and regulate trafficking of nutrients and
effector proteins. A principle structure within the parasitophorous vacuole is the intravacuolar network of
membranous tubules (the IVN), which is thought to act as a major trafficking apparatus. IVN biogenesis is
formed by the direct action of oligomeric complexes of parasite proteins and mutants that disrupt the IVN
show reduced virulence in animal models of infection. We have identified a parasite-specific protein kinase
that regulates the membrane association of a subset of the proteins that associate with the parasitophorous
vacuolar and IVN membranes, and deletion of this kinase results in vacuoles with aberrant IVN tubulation.
While we have identified the kinase substrates and the sites of phosphorylation, the interactions that are
regulated by this phosphorylation are unknown. The goal of the proposed studies is to determine the
precise molecular mechanisms by which phosphorylation regulates the inter- and intra-molecular
interactions that drive IVN biogenesis. First, we will determine how the components of the protein
complexes that drive IVN biogenesis change as the complexes progress through the parasite secretory
system and insert into the IVN membrane. We will use molecular genetic, cellular, and biochemical methods
to determine the molecular mechanisms by which phosphorylation regulates these protein-protein
interactions to facilitate IVN development. Furthermore, we will use innovative biophysical methods to
generate the first structural models of these critical parasite protein complexes to determine the biophysical
mechanism by which they induce IVN formation.
项目摘要/摘要
弓形虫几乎可以感染几乎所有温血动物的任何细胞类型。
可以说是地球上最成功的寄生虫,已经感染了大约三分之一的
全球的人类。虽然最初的感染通常不会出现并发症,但寄生虫能够持续存在。
为其宿主的生命,并可再次出现在免疫功能受损和免疫抑制而导致致命
疾病。弓形虫和其他顶端复合体寄生虫一样,必须入侵宿主细胞才能生存和复制。
一旦进入宿主细胞,寄生虫就会在一个名为
寄生性液泡。空泡的破坏会导致寄生虫的死亡,寄生虫会分泌一种
蛋白质进入液泡的电池,以促进其生物发生和调节营养物质的运输
效应器蛋白。寄生液泡中的一个主要结构是液泡内网络
膜小管(IVN),被认为是主要的运输工具。IVN生物发生是
由破坏IVN的寄生虫蛋白和突变体的寡聚复合体直接作用而形成
在感染的动物模型中显示毒力降低。我们已经鉴定出一种寄生虫特异的蛋白激酶
它调节与寄生虫相关的蛋白质子集的膜结合
空泡和IVN膜,该激酶的缺失会导致IVN管形成异常的空泡。
虽然我们已经确定了激酶底物和磷酸化的位置,但
被这种磷酸化调控的基因是未知的。拟议研究的目标是确定
磷酸化调控分子间和分子内的精确分子机制
推动IVN生物发生的相互作用。首先,我们将确定蛋白质的成分是如何
推动IVN生物发生的复合体在寄生虫分泌过程中发生变化
系统并插入IVN膜中。我们将使用分子遗传学、细胞学和生物化学方法
以确定磷酸化调节这些蛋白质-蛋白质的分子机制
促进IVN发展的互动。此外,我们将使用创新的生物物理方法来
生成这些关键寄生虫蛋白质复合体的第一个结构模型,以确定生物物理
它们诱导IVN形成的机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Lloyd Reese其他文献
Michael Lloyd Reese的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Lloyd Reese', 18)}}的其他基金
Elucidating the role of the Toxoplasma residual body in cytoskeleton turnover
阐明弓形虫残体在细胞骨架更新中的作用
- 批准号:
10591825 - 财政年份:2022
- 资助金额:
$ 40.56万 - 项目类别:
Kinase regulation of trafficking at the Toxoplasma intravacuolar network
弓形虫液泡内网络运输的激酶调节
- 批准号:
10573199 - 财政年份:2020
- 资助金额:
$ 40.56万 - 项目类别:
Interrogating the Interaction between Toxoplasma Secreted Factors and the Host Im
探讨弓形虫分泌因子与宿主免疫之间的相互作用
- 批准号:
8852529 - 财政年份:2014
- 资助金额:
$ 40.56万 - 项目类别:
Interrogating the Interaction between Toxoplasma Secreted Factors and the Host Im
探讨弓形虫分泌因子与宿主免疫之间的相互作用
- 批准号:
8224279 - 财政年份:2014
- 资助金额:
$ 40.56万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 40.56万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 40.56万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 40.56万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 40.56万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 40.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 40.56万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 40.56万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 40.56万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 40.56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 40.56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists