Creating an adaptive screening tool for detecting neurocognitive deficits and psychopathology across the lifespan

创建自适应筛查工具来检测整个生命周期的神经认知缺陷和精神病理学

基本信息

  • 批准号:
    10356829
  • 负责人:
  • 金额:
    $ 67.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-05-01 至 2024-02-29
  • 项目状态:
    已结题

项目摘要

Efforts to include behavioral measures in large-scale studies as envisioned by precision medicine are hampered by the time and expertise required. Paper-and-pencil tests currently dominating clinical assessment and neuropsychological testing are plainly unfeasible. The NIH Toolbox contains many computerized tests and clinical assessment tools varying in feasibility. Unique in the Toolbox is the Penn Computerized Neurocognitive Battery (CNB), which contains 14 tests that take one hour to administer. CNB has been validated with functional neuroimaging and in multiple normative and clinical populations across the lifespan worldwide, and is freely available for research. Clinical assessment tools are usually devoted to specific disorders, and scales vary in their concentration on symptoms that are disorder specific. We have developed a broad assessment tool (GOASSESS), which currently takes about one hour to administer. These instruments were constructed, optimized and validated with classical psychometric test theory (CTT), and are efficient as CTT allows. However, genomic studies require even more time-efficient tools that can be applied massively. Novel approaches, based on item response theory (IRT) can vastly enhance efficiency of testing and clinical assessment. IRT shifts the emphasis from the test to the items composing it by estimating item parameters such as “difficulty” and “discrimination” within ranges of general trait levels. IRT helps shorten the length of administration without compromising data quality, and for many domains leads to computer adaptive testing (CAT) that further optimizes tests to individual abilities. We propose to develop and validate adaptive versions of the CNB and GOASSESS, resulting in a neurocognitive and clinical screener that, using machine learning tools, will be continually optimized, becoming shorter and more precise as it is deployed. The tool will be in the Toolbox available in the public domain. We have item-level information to perform IRT analyses on existing data and use this information to develop CAT implementations and generate item pools for adaptive testing. Our Specific Aims are: 1. Use available itemwise data on the Penn CNB and the GOASSESS and add new tests and items to generate item pools for extending scope while abbreviating tests using IRT-CAT and other methods. The current item pool will be augmented to allow large selection of items during CAT administration and add clinical items to GOASSESS. New items will be calibrated through crowdsourcing. 2. Produce a modular CAT version of a neurocognitive and clinical assessment battery that covers major RDoC domains and a full range of psychiatric symptoms. We have implemented this procedure on some CNB tests and clinical scales and will apply similar procedures to remaining and new tests as appropriate. 3. Validate the CAT version in 100 individuals with psychosis spectrum disorders (PS), 100 with depression/anxiety disorders (DA), and 100 healthy controls (HC). We will use this dataset to implement and test data mining algorithms that optimize prediction of specific outcomes. All tests, algorithms and normative data will be in the toolbox.
精准医学设想的将行为测量纳入大规模研究的努力是 受制于所需的时间和专业知识。纸笔测试目前主导着临床评估 而神经心理测试显然是不可行的。NIH工具箱包含许多计算机化的测试和 临床评估工具的可行性各不相同。工具箱中独一无二的是宾夕法尼亚大学计算机化的神经认知 电池(CNB),它包含14个测试,需要一个小时来管理。CNB已通过以下验证 功能神经成像,并在全球范围内的多个正常和临床人群中使用,以及 可免费用于研究。临床评估工具通常专门用于特定的障碍,和量表 他们的注意力集中在特定于疾病的症状上。我们已经制定了一项广泛的评估 工具(GOASSESS),它目前需要大约一个小时来管理。这些仪器是建造的, 使用经典心理测量理论(CTT)进行优化和验证,并在CTT允许的情况下保持效率。 然而,基因组研究需要更省时的工具,可以大规模应用。 基于项目反应理论(IRT)的新方法可以极大地提高测验的效率和 临床评估。IRT通过估计条目将重点从测试转移到构成测试的条目上 在一般特质水平范围内的“难度”和“辨别”等参数。IRT有助于缩短 在不影响数据质量的情况下管理的时间长度,并且对于许多领域导致计算机自适应 测试(CAT),进一步优化对个人能力的测试。我们建议开发和验证自适应 CNB和GOASSESS的版本,导致神经认知和临床筛查,使用机器 学习工具将不断优化,在部署时变得更短、更精确。该工具将 在公共领域中可用的工具箱中。我们有要对其执行IRT分析的项目级信息 现有数据,并使用此信息开发CAT实施并为自适应 测试。我们的具体目标是:1.使用宾夕法尼亚州立大学和GOASSESS上可用的逐项数据,并添加 新的测试和项,用于生成项池以扩展范围,同时使用IRT-CAT和 其他方法。将扩大当前项目库,以允许在CAT期间进行大量项目选择 管理和添加临床项目到GOASSESS。新产品将通过众包进行校准。2. 制作涵盖主要RDoC的神经认知和临床评估单元的模块化CAT版本 领域和各种精神症状。我们已经在一些CNB测试中实施了这一程序 和临床量表,并将酌情将类似程序应用于剩余和新的测试。3.验证 100例精神病谱系障碍(PS)和100例抑郁症/焦虑症患者的CAT版本 (DA)和100名健康对照(HC)。我们将使用该数据集来实现和测试数据挖掘算法 优化对特定结果的预测。所有测试、算法和标准数据都将放在工具箱中。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ruben C. Gur其他文献

478. Cross-Site Quality Assessment of Data From a Pharmacologic Neuroimaging Trial Targeting Working Memory Neural Circuits in Schizophrenia
478. 针对精神分裂症工作记忆神经回路的药理神经影像学试验数据的跨站点质量评估
  • DOI:
    10.1016/j.biopsych.2025.02.716
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    9.000
  • 作者:
    Catrin Zharyy;Clara Fonteneau;Masih Rahmati;Ally Price;Roberto Gil;Preetika Govil;Jack Grinband;Ruben C. Gur;Natalka K. Haubold;Zachary Heffernan;Jing Lu;Megan Mayer;Mohini Ranganathan;Nicole P. Santamauro;Zailyn Tamayo;Jared Van Snellenberg;Daniel H. Wolf;TRANSCENDS Group;Alan Anticevic;Jeffrey A. Lieberman;Joshua T. Kantrowitz;Youngsun Cho
  • 通讯作者:
    Youngsun Cho
Poster #171 YOGA AS ADJUNCTIVE COGNITIVE REMEDIATION FOR SCHIZOPHRENIA IN INDIA
  • DOI:
    10.1016/s0920-9964(12)70485-1
  • 发表时间:
    2012-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Triptish Bhatia;Akhilesh Agrawal;Gyandeepak Shah;Wood Joel;Jan Richards;Raquel E. Gur;Ruben C. Gur;Vishwajit L. Nimgaonkar;Smita N. Deshpande
  • 通讯作者:
    Smita N. Deshpande
318 - Unilateral olfactory functioning in patients with schizophrenia
  • DOI:
    10.1016/s0920-9964(97)82326-2
  • 发表时间:
    1997-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Paul J. Moberg;Bruce I. Turetsky;Richard Doty;Donald McKeown;Ruben C. Gur;Raquel E. Gur
  • 通讯作者:
    Raquel E. Gur
Reward Network Glutamate Level is Associated With Dimensional Reward Responsiveness
  • DOI:
    10.1016/j.biopsych.2020.02.567
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Valerie Sydnor;Christian G. Kohler;Andrew J.D. Crow;Bart Larsen;Monica E. Calkins;Ruben C. Gur;Raquel E. Gur;Joe Kable;Jami Young;Ravi PR. Nanga;Ravinder Reddy;Daniel H. Wolf;Theodore Satterthwaite;David Roalf
  • 通讯作者:
    David Roalf
405. Exploring the Glutamatergic Underpinnings of Within-Network Functional Connectivity and Motor Performance in a Transdiagnostic Cohort
  • DOI:
    10.1016/j.biopsych.2024.02.904
  • 发表时间:
    2024-05-15
  • 期刊:
  • 影响因子:
  • 作者:
    Margaret Pecsok;Alfredo Lucas;Ally Atkins;Monica Calkins;Adam Czernuszenko;Ruben C. Gur;Ravi Prakash Reddy Nanga;Heather Robinson;Kosha Ruparel;Nick Wellman;Daniel Wolf;Theodore Satterthwaite;David Roalf
  • 通讯作者:
    David Roalf

Ruben C. Gur的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ruben C. Gur', 18)}}的其他基金

Creating an adaptive screening tool for detecting neurocognitive deficits and psychopathology across the lifespan
创建自适应筛查工具来检测整个生命周期的神经认知缺陷和精神病理学
  • 批准号:
    9920211
  • 财政年份:
    2019
  • 资助金额:
    $ 67.76万
  • 项目类别:
Creating an adaptive screening tool for detecting neurocognitive deficits and psychopathology across the lifespan
创建自适应筛查工具来检测整个生命周期的神经认知缺陷和精神病理学
  • 批准号:
    10112310
  • 财政年份:
    2019
  • 资助金额:
    $ 67.76万
  • 项目类别:
Multimodal brain maturation indices modulating psychopathology and neurocognition
调节精神病理学和神经认知的多模式大脑成熟指数
  • 批准号:
    9275046
  • 财政年份:
    2015
  • 资助金额:
    $ 67.76万
  • 项目类别:
2/3-Networks from Multidimensional Data for Schizophrenia and Related Disorders
2/3-来自精神分裂症和相关疾病多维数据的网络
  • 批准号:
    8665498
  • 财政年份:
    2012
  • 资助金额:
    $ 67.76万
  • 项目类别:
3/5-Genetics of Transcriptional Endophenotypes for Schizophrenia
3/5-精神分裂症转录内表型的遗传学
  • 批准号:
    8237585
  • 财政年份:
    2012
  • 资助金额:
    $ 67.76万
  • 项目类别:
3/5-Genetics of Transcriptional Endophenotypes for Schizophrenia
3/5-精神分裂症转录内表型的遗传学
  • 批准号:
    8657481
  • 财政年份:
    2012
  • 资助金额:
    $ 67.76万
  • 项目类别:
2/3-Networks from Multidimensional Data for Schizophrenia and Related Disorders
2/3-来自精神分裂症和相关疾病多维数据的网络
  • 批准号:
    8501689
  • 财政年份:
    2012
  • 资助金额:
    $ 67.76万
  • 项目类别:
2/3-Networks from Multidimensional Data for Schizophrenia and Related Disorders
2/3-来自精神分裂症和相关疾病多维数据的网络
  • 批准号:
    8305318
  • 财政年份:
    2012
  • 资助金额:
    $ 67.76万
  • 项目类别:
3/5-Genetics of Transcriptional Endophenotypes for Schizophrenia
3/5-精神分裂症转录内表型的遗传学
  • 批准号:
    8463034
  • 财政年份:
    2012
  • 资助金额:
    $ 67.76万
  • 项目类别:
Changes in neural response to eating after bariatric surgery: MRI results
减肥手术后饮食神经反应的变化:MRI 结果
  • 批准号:
    8607936
  • 财政年份:
    2010
  • 资助金额:
    $ 67.76万
  • 项目类别:

相似海外基金

Using generative AI combined with immersive technology to treat anxiety disorders
利用生成式人工智能结合沉浸式技术治疗焦虑症
  • 批准号:
    10109165
  • 财政年份:
    2024
  • 资助金额:
    $ 67.76万
  • 项目类别:
    Launchpad
Integration of stepped care for Perinatal Mood and Anxiety Disorders among Women Living with HIV in Kenya
肯尼亚艾滋病毒感染妇女围产期情绪和焦虑障碍的分级护理一体化
  • 批准号:
    10677075
  • 财政年份:
    2023
  • 资助金额:
    $ 67.76万
  • 项目类别:
Understanding the Effects of Adolescent Nicotine Exposure on Increased Risk for Mood and Anxiety Disorders: Bridging the Gap from Pre-Clinical to Clinical Investigations
了解青少年尼古丁暴露对情绪和焦虑障碍风险增加的影响:弥合临床前研究与临床研究之间的差距
  • 批准号:
    478121
  • 财政年份:
    2023
  • 资助金额:
    $ 67.76万
  • 项目类别:
    Operating Grants
Addressing perinatal mood and anxiety disorders (PMADs) through a doula intervention
通过导乐干预解决围产期情绪和焦虑障碍 (PMAD)
  • 批准号:
    10861961
  • 财政年份:
    2023
  • 资助金额:
    $ 67.76万
  • 项目类别:
Evaluation of the effectiveness and implementation of online group cognitive behavioral therapy for perinatal women with anxiety disorders.
评估在线团体认知行为治疗对患有焦虑症的围产期妇女的有效性和实施情况。
  • 批准号:
    22KJ3164
  • 财政年份:
    2023
  • 资助金额:
    $ 67.76万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Investigating the error-related negativity and the balance N1 in children with anxiety disorders
调查焦虑症儿童的错误相关消极性和平衡 N1
  • 批准号:
    10685283
  • 财政年份:
    2022
  • 资助金额:
    $ 67.76万
  • 项目类别:
RESONY: Digital therapeutic to manage anxiety disorders
RESONY:管理焦虑症的数字疗法
  • 批准号:
    10042996
  • 财政年份:
    2022
  • 资助金额:
    $ 67.76万
  • 项目类别:
    Grant for R&D
Augmenting the Efficacy of Benzodiazepine Taper with Telehealth-Delivered Cognitive Behavioral Therapy for Anxiety Disorders in Patients Using Prescription Opioids
通过远程医疗提供的认知行为疗法来增强苯二氮卓类药物逐渐减少的疗效,以治疗使用处方阿片类药物的焦虑症患者
  • 批准号:
    10705005
  • 财政年份:
    2022
  • 资助金额:
    $ 67.76万
  • 项目类别:
Developing an adjunctive mobile application for co-morbid substance use and anxiety disorders: comprehensive user experience testing of the Unwinding Anxiety application
开发针对共病药物使用和焦虑症的辅助移动应用程序:Unwinding Anxiety 应用程序的综合用户体验测试
  • 批准号:
    10597521
  • 财政年份:
    2022
  • 资助金额:
    $ 67.76万
  • 项目类别:
Investigating the role of neuroinflammation in environmental exposure-induced anxiety disorders
研究神经炎症在环境暴露诱发的焦虑症中的作用
  • 批准号:
    10573948
  • 财政年份:
    2022
  • 资助金额:
    $ 67.76万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了