Visual biofeedback to reduce head motion during MRI scans

视觉生物反馈可减少 MRI 扫描期间的头部运动

基本信息

  • 批准号:
    10199977
  • 负责人:
  • 金额:
    $ 151.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-11 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Project Abstract/Summary The goal of this STTR application is to deliver a brain MRI technology that feeds back head motion measurements derived from our Framewise Integrated Real-Time MRI Monitoring (FIRMM) to MRI scan participants in order to reduce head motion via behavioral training. Because MRI scanning produces high- resolution images and does not expose patients to radiation, it has become an immensely valuable diagnostic tool, particularly for imaging the brain. Last year, in the United States alone, there were over 8 million brain MRIs, costing an estimated $20-30 billion. Unfortunately, brain MRIs are limited by the fact that head motion during the scan can cause the resulting images to be suboptimal or even unusable. An estimated 20% of all brain MRIs are ruined by motion, wasting $2-4 billion annually. Currently, there are two predominant strategies to combat head motion: repeat scanning and anesthesia, both of which are inadequate. Repeat scanning, which consists of acquiring extra images (to ensure enough usable ones were acquired), increases scanning time and cost, and can result in too few usable images or unnecessary extra images. Anesthesia, which is given to patients who are likely to move (such as young children), presents a serious safety risk and is sometimes administered unnecessarily (i.e. the patient could hold still without anesthesia). Anesthesia is never an option for functional MRI (fMRI), which requires participants to be awake. The software-based FIRMM-biofeedback solution proposed in this grant uses MR images (as they are being collected) to compute a patient’s head motion in real time during an MRI scan. The availability of real time motion information will enable more informed anesthesia use and reduce excess scanning, making these methods safer and more efficient. Armed with real time motion information, scan operators will know exactly how many usable images have been acquired, preventing the acquisition of too many or too few extra images. Additionally, providing physicians with quantitative information about patient motion will allow them to make an informed decision regarding anesthesia, preventing unnecessary sedation. The proposed solution focuses on a completely new biobehavioral method for combating head motion: subject biofeedback. The technology can translate the head motion information into age-appropriate, visual biofeedback for the scan participant. By providing feedback to patients and research subjects, the FIRMM- biofeedback technology helps both pediatric and adult patients remain more still, improving image quality. The proposed research focuses on delivering proof-of-concept for FIRMM-biofeedback (Phase I) and building and validating a product version of FIRMM-biofeedback (Phase II). The FIRMM-biofeedback technology provides patients and research subjects with real time head motion information, with the goal of making MR scans safer, faster, more enjoyable and less expensive.
项目摘要/摘要 该STTR应用的目的是提供脑MRI技术,以使头部运动反馈 从我们的框架集成的实时MRI监测(FIRMM)到MRI扫描得出的测量值 参与者是为了通过行为训练减少头部运动。因为MRI扫描产生高 分辨率图像,不会使患者暴露于辐射,它已成为非常有价值的诊断 工具,特别是用于成像大脑。去年,仅在美国就有超过800万个大脑 MRI,估计耗资200亿美元。不幸的是,大脑MRI受到头部运动的限制 在扫描过程中,可能导致产生的图像次优甚至无法使用。估计全部20% 大脑MRI被动作破坏,每年浪费200亿美元。目前,有两种主要策略 对抗头部运动:重复扫描和麻醉,两者都不足。重复扫描, 其中包括获取额外图像(以确保获得足够的可用图像),增加扫描 时间和成本,可能会导致很少的可用图像或不必要的额外图像。麻醉,就是 给予可能移动的患者(例如幼儿),出现严重的安全风险,是 有时会受到不必要的施用(即,患者仍然可以在没有麻醉的情况下保持)。麻醉永远不会 功能性MRI(fMRI)的选项,它要求参与者清醒。 该赠款中提出的基于软件的Firmm-BiofeDback解决方案使用MR图像(因为它们正在 收集)在MRI扫描过程中,实时计算患者的头部运动。实时的可用性 运动信息将使更多明智的麻醉使用并减少多余的扫描,从而使这些 方法更安全,更有效。扫描操作员将拥有实时运动信息,将确切知道 获取了多少可用图像,以阻止收购过多或太少的额外图像。 此外,向医生提供有关患者运动的定量信息将使他们能够做 关于麻醉的明智决定,防止不必要的镇静。 提出的解决方案着重于全新的生物行为方法来对抗头部运动:受试者 生物反馈。该技术可以将头部运动信息转化为适合年龄的视觉 扫描参与者的生物反馈。通过向患者和研究对象提供反馈,FINDM- 生物反馈技术可帮助小儿和成年患者保持更静止,从而提高图像质量。这 拟议的研究重点是为Firmm-BioFeDback(I阶段)和建筑物和建筑物以及 验证firmm-biofeDback的产品版本(第二阶段)。 Firmm-BioFeDback技术提供 具有实时头部运动信息的患者和研究对象,目的是使MR扫描更安全, 更快,更有趣,更便宜。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ken Bruener其他文献

Ken Bruener的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ken Bruener', 18)}}的其他基金

Framewise Integrated Real-Time MRI Monitoring (FIRMM) software commercialization readiness for clinical care
逐帧集成实时 MRI 监测 (FIRMM) 软件为临床护理做好商业化准备
  • 批准号:
    10697965
  • 财政年份:
    2023
  • 资助金额:
    $ 151.92万
  • 项目类别:
Behavioral feedback and rewards for improving functional brain mapping in presurgical pediatric patients
改善术前儿科患者大脑功能图谱的行为反馈和奖励
  • 批准号:
    10707227
  • 财政年份:
    2022
  • 资助金额:
    $ 151.92万
  • 项目类别:
Behavioral feedback and rewards for improving functional brain mapping in presurgical pediatric patients
改善术前儿科患者大脑功能图谱的行为反馈和奖励
  • 批准号:
    10546990
  • 财政年份:
    2022
  • 资助金额:
    $ 151.92万
  • 项目类别:
Commercialization readiness of visual biofeedback to reduce head motion during MRI scans
视觉生物反馈已做好商业化准备,以减少 MRI 扫描期间的头部运动
  • 批准号:
    10382713
  • 财政年份:
    2021
  • 资助金额:
    $ 151.92万
  • 项目类别:
Commercialization readiness of visual biofeedback to reduce head motion during MRI scans
视觉生物反馈已做好商业化准备,以减少 MRI 扫描期间的头部运动
  • 批准号:
    10532740
  • 财政年份:
    2021
  • 资助金额:
    $ 151.92万
  • 项目类别:
Visual biofeedback to reduce head motion during MRI scans
视觉生物反馈可减少 MRI 扫描期间的头部运动
  • 批准号:
    10437644
  • 财政年份:
    2019
  • 资助金额:
    $ 151.92万
  • 项目类别:
Visual biofeedback to reduce head motion during MRI scans
视觉生物反馈可减少 MRI 扫描期间的头部运动
  • 批准号:
    10442332
  • 财政年份:
    2019
  • 资助金额:
    $ 151.92万
  • 项目类别:

相似国自然基金

自然接触对青少年网络问题行为的作用机制及其干预
  • 批准号:
    72374025
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
大气污染物对青少年心理健康的影响机制研究
  • 批准号:
    42377437
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
心肺耐力对青少年执行功能影响效应及其特定脑区激活状态的多民族研究
  • 批准号:
    82373595
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
中国父母情绪教养行为对青少年非自杀性自伤的影响及其机制
  • 批准号:
    32300894
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
执行技能训练联合动机行为治疗对注意缺陷多动障碍青少年疗效及脑机制
  • 批准号:
    82371557
  • 批准年份:
    2023
  • 资助金额:
    65 万元
  • 项目类别:
    面上项目

相似海外基金

Development of practical screening tools to support targeted prevention of early, high-risk drinking substance use
开发实用的筛查工具,以支持有针对性地预防早期高风险饮酒物质的使用
  • 批准号:
    10802793
  • 财政年份:
    2023
  • 资助金额:
    $ 151.92万
  • 项目类别:
Investigating relationships between problematic social media use and binge-eating disorder to inform precision guidance for adolescents
调查有问题的社交媒体使用与暴食症之间的关系,为青少年提供精准指导
  • 批准号:
    10815182
  • 财政年份:
    2023
  • 资助金额:
    $ 151.92万
  • 项目类别:
A new large pre-clinical model of aging-related heart failure: a platform to develop new therapies for HFpEF
衰老相关心力衰竭的新型大型临床前模型:开发 HFpEF 新疗法的平台
  • 批准号:
    10750836
  • 财政年份:
    2023
  • 资助金额:
    $ 151.92万
  • 项目类别:
Gene-Environment Interplay and Alcohol Use among Racially-Ethnically Diverse Youth: A Developmentally and Culturally Informed Approach
种族-民族多元化青年中的基因-环境相互作用和酒精使用:一种发展和文化知情的方法
  • 批准号:
    10779197
  • 财政年份:
    2023
  • 资助金额:
    $ 151.92万
  • 项目类别:
Independent and interactive effects of genetic risk for depression and family income-to-needs on emotional brain development and behavior
抑郁症遗传风险和家庭收入需求对情绪脑发育和行为的独立和交互影响
  • 批准号:
    10678577
  • 财政年份:
    2023
  • 资助金额:
    $ 151.92万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了