Synthesis and non-chromatographic purification of long RNA oligonucleotides containing naturally occurring modification
含有天然修饰的长 RNA 寡核苷酸的合成和非色谱纯化
基本信息
- 批准号:10364172
- 负责人:
- 金额:$ 23.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-18 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdenosineAlder plantAnionsBiochemicalBiologicalBiological AssayBiomedical ResearchCellsCellular biologyChemicalsChemistryCommunitiesComplexCoumarinsCouplingCyclooctenesDNAElectronsElementsEnsureExposure toFailureGene Expression RegulationGenetic DiseasesGenetic TranslationGenomicsGoalsHigh Pressure Liquid ChromatographyIn VitroInitiator CodonIsotope LabelingLabelLengthLightMessenger RNAMethodologyMethodsModificationMolecularNational Human Genome Research InstituteNucleotidesOligonucleotidesOryctolagus cuniculusPerceptionPhaseProceduresProcessProductionProteinsPublic HealthRNARNA chemical synthesisRNA purificationRNA-Protein InteractionReportingResearchResearch PersonnelReticulocytesRoleS phaseSiteSolidSpeedSystemTechnologyTimeTransfer RNATranslationsU2 small nuclear RNAUltraviolet RaysVertebral columnVisible RadiationWorkanalogbasechemical synthesiscross reactivitydesignendonucleaseflexibilityfunctional groupgenomic toolsimprovedinstrumentinstrumentationphosphodiesterprocess optimizationprogramstechnology developmenttherapeutic genetool
项目摘要
Title: Chemical synthesis and non-chromatographic purification of long RNA oligonucleotides containing
naturally occurring modifications.
ABSTRACT:
Solid phase synthesis of RNA is an important genomic tool, which offers precise control over the
oligonucleotide sequence and offers an opportunity for site-specific incorporation of RNA modifications,
fluorescent labels and biochemical tags. Discoveries of the twenty-first century created a strong need for a robust
synthesis of RNA strands, that are 100-200 nucleotides (-nt) in length. A major limitation of otherwise highly
optimized process is purification, which is notoriously difficult, labor intensive and requires expensive HPLC
instrumentation. As the result, solid phase synthesis of long oligonucleotides containing RNA modifications is
rarely attempted. This technology-development proposal aims to address this limitation by developing a non-
chromatographic RNA purification method which will be 10-times faster and 2-orders of magnitude cheaper and
will allow isolation of strands that are 100-200-nt long in good yield and 98% purity.
The proposed purification strategy is based on bio-orthogonal inverse electron demand Diels-Alder (IEDDA)
chemistry between trans-cyclooctene (TCO) and tetrazine (Tz) that allows to selectively tag and purify
structurally complex and increasing long RNA strands from the failure strands that accrue during solid phase
synthesis. TCO and Tz are highly selective for each other and have minimal cross-reactivity with other functional
groups found in RNA. The bio-orthogonal click chemistry is highly efficient, even at very low concentrations of
TCO and Tz. During preliminary studies we have shown that our strategy allows efficient synthesis and
purification of 76-nt long tRNA and 101-nt long sgRNA with yields that were 10-times higher than conventional
purification methods.
During the proposed research program, we aim to improve a number of important elements of our design to
bring the overall process to under 7 hrs, further improve the overall yield and purity of the isolated RNA. In Aim
1, we propose to expedite the process by developing a new photolabile linker that will allow fast photocleavage
using visible light. To improve purity and yield of isolated RNA, we propose to optimize the solid phase synthesis
procedure to ensure that all failure sequences are fully capped during each synthetic cycle. The optimized
process will be applied to increasingly longer RNA strands, from 76-nt tRNA to 188-nt long U2 snRNA. In Aim 2,
we plan to illustrate the power of our technology by synthesizing a 144-nt long artificial mRNA, containing m1A
and m6A modifications near the start codon. This will be the longest reported oligonucleotide containing RNA
modifications. The artificial mRNA will be utilized to investigate the impact of RNA modifications on the rate of in
vitro translation. We plan to work with NHGRI technology development team to make the proposed technology
widely available to researchers.
长RNA寡核苷酸的化学合成及非层析纯化
自然发生的修改。
摘要:
固相合成RNA是一种重要的基因组学工具,它可以精确地控制
寡核苷酸序列并提供了RNA修饰的位点特异性掺入的机会,
荧光标签和生化标签。21世纪的发现产生了对强健的
合成核糖核酸链,长度为100-200个核苷酸(-nT)。在其他方面高度集中的主要限制
优化的过程是纯化,这是出了名的困难,劳动密集型,需要昂贵的高效液相
仪器仪表。其结果是,固相合成含有RNA修饰的长寡核苷酸
很少有人尝试过。这项技术开发提案旨在通过开发一种非
层析纯化RNA的方法,速度将快10倍,成本低2个数量级,
将允许以良好的产率和98%的纯度分离100-200-nT长的链。
提出的提纯策略是基于生物正交逆电子需求Diels-Alder(IEDDA)
反式环辛烯(TCO)和四嗪(TZ)之间的化学,允许选择性地标记和提纯
结构复杂且不断增加的长RNA链来自在固相过程中积累的故障链
综合。TCO和TZ对彼此具有很高的选择性,与其他官能团的交叉反应最小
在RNA中发现的基团。生物正交点击化学是高效的,即使在非常低的浓度
TCO和TZ。在初步研究中,我们的策略允许有效的合成和
纯化76个核苷酸的长tRNA和101个核苷酸的长sgRNA,产量比常规提纯提高10倍
纯化方法。
在拟议的研究计划中,我们的目标是改进我们设计的一些重要元素,以
将整个过程控制在7小时以内,进一步提高了总RNA的得率和纯度。在AIM
1,我们建议通过开发一种新的光敏连接物来加快这一过程,这种连接物将允许快速光切割
利用可见光。为了提高分离RNA的纯度和得率,我们建议优化固相合成
确保在每个合成周期内完全封顶所有故障序列的程序。经过优化的
这一过程将应用于越来越长的RNA链,从76个核苷酸的tRNA到188个核苷酸的U2 SnRNA。在目标2中,
我们计划通过合成包含M1a的144个核苷酸长的人造mRNA来说明我们技术的力量
和起始密码子附近的m6A修饰。这将是已报道的最长的含有RNA的寡核苷酸
修改。人工合成的信使核糖核酸将被用来研究RNA修饰对核糖核酸酶活性的影响。
体外翻译。我们计划与NHGRI技术开发团队合作,使拟议的技术
研究人员可以广泛使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maksim Royzen其他文献
Maksim Royzen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maksim Royzen', 18)}}的其他基金
Synthesis and non-chromatographic purification of long RNA oligonucleotides containing naturally occurring modification
含有天然修饰的长 RNA 寡核苷酸的合成和非色谱纯化
- 批准号:
10552062 - 财政年份:2022
- 资助金额:
$ 23.24万 - 项目类别:
Generalizable Protodrug Characteristics for In Vivo Drug Release using the Click Activated Protodrugs (CAP) Platform
使用点击激活原药 (CAP) 平台进行体内药物释放的可推广原药特征
- 批准号:
10383848 - 财政年份:2022
- 资助金额:
$ 23.24万 - 项目类别:
Development of Catch and Release Approach for Multi-Drug Local Delivery of Chemotherapies
多药物局部化疗递送捕获和释放方法的开发
- 批准号:
9759886 - 财政年份:2018
- 资助金额:
$ 23.24万 - 项目类别:
Development of blood-brain barrier permeable MRI contrast agents
可透过血脑屏障的MRI造影剂的研制
- 批准号:
7803276 - 财政年份:2010
- 资助金额:
$ 23.24万 - 项目类别:
Development of blood-brain barrier permeable MRI contrast agents
可透过血脑屏障的MRI造影剂的研制
- 批准号:
8119619 - 财政年份:2010
- 资助金额:
$ 23.24万 - 项目类别:
相似国自然基金
基于ADK/Adenosine调控DNA甲基化探讨“利湿化瘀通络”法对2型糖尿病肾病足细胞裂孔膜损伤的干预机制研究
- 批准号:82074359
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
细胞外腺苷(Adenosine)作为干细胞旁分泌因子的生物学鉴定和功能分析
- 批准号:81570244
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
Adenosine诱导A1/A2AR稳态失衡启动慢性低灌注白质炎性损伤及其机制
- 批准号:81171113
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Targeting the A2B Adenosine Receptor for Immunoprevention of Pancreatic Cancer
靶向 A2B 腺苷受体用于胰腺癌的免疫预防
- 批准号:
10929664 - 财政年份:2023
- 资助金额:
$ 23.24万 - 项目类别:
Exploring the role of adenosine A2A receptors in Schizophrenia using opto-pharmacologically controlled allosteric modulation.
利用光药理学控制的变构调节探索腺苷 A2A 受体在精神分裂症中的作用。
- 批准号:
23K14685 - 财政年份:2023
- 资助金额:
$ 23.24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Role of Adenosine Kinase in Mixed Diastolic Heart Failure and Alzheimer Disease
腺苷激酶在混合性舒张性心力衰竭和阿尔茨海默病中的作用
- 批准号:
10679989 - 财政年份:2023
- 资助金额:
$ 23.24万 - 项目类别:
Allostery-driven G protein selectivity in the adenosine A1 receptor
腺苷 A1 受体中变构驱动的 G 蛋白选择性
- 批准号:
BB/W016974/1 - 财政年份:2023
- 资助金额:
$ 23.24万 - 项目类别:
Research Grant
Investigation of new test methods for adenosine-sensitive atrioventricular block
腺苷敏感型房室传导阻滞新检测方法的探讨
- 批准号:
23K07566 - 财政年份:2023
- 资助金额:
$ 23.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Probing the role of adenosine pathway in SIV pathogenesis
探讨腺苷途径在 SIV 发病机制中的作用
- 批准号:
10760676 - 财政年份:2023
- 资助金额:
$ 23.24万 - 项目类别:
The role of A1 adenosine receptor signaling in the decline of S. pneumoniae killing by neutrophils in vaccinated aged hosts
A1 腺苷受体信号传导在疫苗接种老年宿主中中性粒细胞杀伤肺炎链球菌下降中的作用
- 批准号:
10605737 - 财政年份:2023
- 资助金额:
$ 23.24万 - 项目类别:
Adenosine triphosphate as a master variable for biomass in the oceanographic context
三磷酸腺苷作为海洋学背景下生物量的主变量
- 批准号:
2319114 - 财政年份:2023
- 资助金额:
$ 23.24万 - 项目类别:
Standard Grant
Late-Stage Functionalisation of Cyclic Guanosine Monophosphate - Adenosine Monophosphate
环单磷酸鸟苷-单磷酸腺苷的后期功能化
- 批准号:
2751533 - 财政年份:2022
- 资助金额:
$ 23.24万 - 项目类别:
Studentship
Postnatal development of adenosine kinase in the brainstem network that controls breathing
控制呼吸的脑干网络中腺苷激酶的出生后发育
- 批准号:
573323-2022 - 财政年份:2022
- 资助金额:
$ 23.24万 - 项目类别:
University Undergraduate Student Research Awards