Tracking Peripheral T-Cell Repertoire Changes for Preoperative and Early Ovarian Cancer Diagnosis
追踪外周 T 细胞库的变化以进行术前和早期卵巢癌诊断
基本信息
- 批准号:10364443
- 负责人:
- 金额:$ 65.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:Adnexal MassAffectAgeAntigensArtificial IntelligenceBenignBiological MarkersBiometryBloodCA-125 AntigenCancer DetectionCancer EtiologyCancer PatientCancerousCessation of lifeClinicalClinical ResearchDataData SetDetectionDevelopmentDiagnosisDiagnosticDiagnostic ProcedureDiagnostic SpecificityDiseaseEarly DiagnosisEvaluationExcisionFemaleFutureGoalsGoldGynecologic OncologyHistologicHumanImageImmune responseImmune systemImmunogenomicsImmunologyIrrigationLesionLifeLogistic RegressionsLow PrevalenceMalignant - descriptorMalignant NeoplasmsMalignant neoplasm of ovaryMeasuresMethodsModelingNeoplasm MetastasisOperative Surgical ProceduresOvarianOvarian MassOvarian Serous AdenocarcinomaOvaryPatientsPelvisPeripheralPilot ProjectsPlanned PregnancyProcessProliferatingProstate, Lung, Colorectal, and Ovarian Cancer Screening TrialPublic DomainsReporterRepresentational Oligonucleotide Microarray AnalysisResearch PersonnelRiskRoleRouteSamplingScreening for Ovarian CancerSensitivity Training GroupsSensitivity and SpecificitySerumSignal TransductionSkatesSpecificitySpecimenStage at DiagnosisSymptomsT cell receptor repertoire sequencingT-Cell ReceptorT-LymphocyteT-cell receptor repertoireTestingTissuesTrainingTumor AntigensTumor MarkersUltrasonographyUnnecessary SurgeryUterusValidationWomanaccurate diagnosisantigen-specific T cellsbasebiobankbiomarker developmentbiomarker performancecancer biomarkerscancer diagnosiscohortcollaborative trialdetection methoddetection sensitivitydiagnosis standarddiagnostic accuracydiagnostic biomarkerdiagnostic criteriadisease diagnosisimmunogenicityimprovedindexinginnovationmachine learning methodmachine learning modelmachine learning predictionmortalitymultimodalitymultiplex assaynoninvasive diagnosisnovelpreservationprospectiverecruitreproductivescreeningsequencing platformsoftware developmentspecific biomarkerstooltranscriptome sequencingtumortumor progressionyoung woman
项目摘要
Project Summary
Ovarian cancer is the most lethal female cancer. When the disease can be diagnosed at early stage, there is
striking survival improvement (five year survival ≥ 90%), compared to late stages (≤ 40%). However, currently
no early detection method for ovarian cancer has enough accuracy, and most tumors already progressed to
advanced stages at diagnosis. Furthermore, over 70% of the adnexal masses detected on preoperative
imaging are found to be benign after pelvic surgery. Current clinical tests rely on serum CA-125 and
sonograms to diagnose the ovarian adnexal masses. However, CA-125 is elevated by many common benign
conditions; and ultrasound imaging of ovary frequently misses small but malignant lesions. As a result, surgical
removal of the lesion and histologic evaluation remains the only gold standard for diagnosis. These limitations
dictate an urgent clinical need of a better preoperative diagnostic method with high detection accuracy, to
lower the mortality rate, reduce unnecessary surgeries and preserve the life choices for many patients,
especially young women at reproductive age planning for pregnancies. Here, we propose a completely
different route to detect ovarian cancer signals from the blood T cell repertoire. This is feasible because the T
lymphocytes recognize tumor antigens at initial stages, proliferate and alter the peripheral T cell repertoire.
Therefore, detection of cancer-associated T cells (CAT) in the blood provides an exciting novel opportunity for
non-invasive cancer diagnosis. However, no prior studies have achieved this goal because it is difficult to
identify CAT in high-throughput, as most of the cancer antigens remain unknown. To prepare for this task, we
developed the software TRUST and iSMART, to obtain antigen-specific TCRs from cancer datasets. These
tools have enabled us to produce a large training set of CATs, which allowed us to identify diagnostic TCRs for
the ovarian cancer patients. Following this result, we further developed DeepCAT, for pan-cancer prediction
using blood TCR sequencing data, and demonstrated over 99% specificity and 86% sensitivity in a pilot study
to predict ovarian cancer patients (n=14) from healthy donors (n=176). To develop this approach into a novel
ovarian cancer specific biomarker, we have established a biorepository to prospectively collect specimens from
patients with benign or malignant ovarian lesions and from healthy donors of similar age span, with related
clinical information. In Aim 1, we will generate TCR sequencing data of the new patient samples to develop a
novel, TCR-based ovarian cancer predictor using machine learning method. In Aim 2, we will combine this
approach with existing clinical tests to obtain a multi-modality biomarker, and independently test it using the
samples from the Uterine Lavage cohort led by Dr. Steven Skates. These Aims will be delivered by the PIs and
co-investigators with complementary expertise covering gynecological oncology, clinical cohort recruitment,
biostatistics, artificial intelligence, immunology and ovarian cancer biomarker development.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jayanthi S Lea其他文献
Jayanthi S Lea的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jayanthi S Lea', 18)}}的其他基金
Tracking Peripheral T-Cell Repertoire Changes for Preoperative and Early Ovarian Cancer Diagnosis
追踪外周 T 细胞库的变化以进行术前和早期卵巢癌诊断
- 批准号:
10542809 - 财政年份:2022
- 资助金额:
$ 65.65万 - 项目类别:
Tracking Peripheral T-Cell Repertoire Changes for Preoperative and Early Ovarian Cancer Diagnosis
追踪外周 T 细胞库的变化以进行术前和早期卵巢癌诊断
- 批准号:
10906611 - 财政年份:2022
- 资助金额:
$ 65.65万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 65.65万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 65.65万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 65.65万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 65.65万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 65.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 65.65万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 65.65万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 65.65万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 65.65万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 65.65万 - 项目类别:
Miscellaneous Programs














{{item.name}}会员




