Innovative methods to reduce racial and ethnic disparities in suicide risk prediction
减少自杀风险预测中种族和民族差异的创新方法
基本信息
- 批准号:10363191
- 负责人:
- 金额:$ 41.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAdultAgeAlaska NativeAlgorithmsAmerican IndiansAsian Pacific IslanderBlack PopulationsBlack raceCessation of lifeClinicalClinical DataComplexDataDeath RateDevelopmentDifferential DiagnosisEmergency department visitEnsureEthnic OriginEthnic groupEvaluationEventFundingGender IdentityHealth systemHealthcareHealthcare SystemsHispanic PopulationsIndividualLabelLeadMeasurementMeasuresMental HealthMethodsModelingModificationNational Institute of Mental HealthNot Hispanic or LatinoOutcomeOutpatientsPaperPatient CarePatientsPatternPerformancePersonsPopulationPrimary Health CareProceduresPsychiatryRaceRecordsResearchResearch PersonnelRiskRisk FactorsSample SizeSamplingSelf-Injurious BehaviorSeverity of illnessSourceStatistical MethodsStratificationSubgroupSuicideSuicide attemptSuicide preventionUnderserved PopulationUnited StatesVisitVulnerable PopulationsWeightWorkdesignhealth care availabilityhealth care service utilizationhealth care settingshealth disparityhigh riskimprovedinnovationinterestmachine learning methodmachine learning modelnoveloutcome predictionpredictive modelingpreventpreventive interventionracial and ethnicracial and ethnic disparitiesrandom forestrecidivismresponserisk predictionrisk prediction modelsexual identitysimulationsocial health determinantssuicidal behaviorsuicidal morbiditysuicidal risksuicide ratetrend
项目摘要
Suicide death rates in the United States have increased 35% since 1999. In 2018, there were over 48,000
suicide deaths, and an estimated 1.4 million adults attempted suicide. In response, health systems are
adopting suicide risk prediction models to guide delivery of suicide prevention interventions.
Suicide prediction models estimated from health care records may perpetuate current disparities in health care
access, quality, and outcomes. Suicide prediction models may not accurately identify high-risk patients from all
racial and ethnic groups. Suicide rates vary by race and ethnicity, and both the highest and lowest rates are
seen in traditionally underserved populations. Suicide rates are highest among American Indians and Alaskan
Natives (22.1 per 100,000 people) and lowest in Asian and Pacific Islander, Black, and Hispanic populations
(7.0-7.4 per 100,000 people) compared to 18.0 per 100,000 people for White non-Hispanics.
Differences in performance of suicide risk prediction models across racial and ethnic subgroups have three
possible sources. First, predictors of suicide risk may be measured with error, and this error may be different
for racial and ethnic subgroups. Second, suicide attempts and deaths may be misclassified, and
misclassification rates may differ by race and ethnicity. Third, the association between predictors and
outcomes may vary by race and ethnicity, i.e., risk modification.
Existing methods for estimating prediction models are not designed to address racial and ethnic disparities in
performance. Estimation procedures focus on optimizing performance across the entire population, not within
subgroups, and performance in less prevalent subgroups has little impact on overall accuracy. While machine
learning methods, like random forest, explore interactions between predictors and race or ethnicity, suicide
attempt and death are rare events, which limits the information available to identify race- and ethnicity-specific
risk factors. There is also insufficient guidance on sample size calculations for prediction studies.
We will develop novel statistical methods for random forest models that reduce racial and ethnic disparities in
performance of suicide prediction models by addressing gaps in current methods. Aim 1 will develop new
procedures for prediction model estimation that maximize predictive performance within racial and ethnic
subgroups, rather than maximizing average performance across the entire population. Aim 2 will integrate
methods to adjust for differential outcome misclassification in prediction model estimation and evaluation. Aim
3 will design sample size calculations to determine if a study is able to accurately predict outcomes within
racial and ethnic subgroups. We will use existing data on suicide risk factors and outcomes for 15 million
outpatient mental health, 10 million primary care, and 2 million emergency department visits from the NIMH-
funded Mental Health Research Network to implement our methods and estimate suicide prediction models for
each setting that accurately identify patients at highest risk of suicide across all races and ethnicities.
自1999年以来,美国的自杀死亡率增长了35%。2018年,超过48,000
自杀死亡,估计有140万成年人自杀。作为回应,卫生系统是
采用自杀风险预测模型来指导预防自杀的干预措施。
从医疗保健记录估算的自杀预测模型可能会使医疗保健中当前差异永久存在
访问,质量和结果。自杀预测模型可能无法准确地识别出所有人的高风险患者
种族和种族。自杀率因种族和种族而异,最高和最低率的自杀率是
在传统服务不足的人群中可见。美国印第安人和阿拉斯加自杀率最高
亚洲和太平洋岛民,黑人和西班牙裔人口中的当地人(每10万人22.1人),最低
(每100,000人7.0-7.4),而白人非西班牙裔人每10万人为18.0人。
种族和种族亚组的自杀风险预测模型的表现差异有三个
可能的来源。首先,自杀风险的预测因素可能会通过错误来衡量,并且此错误可能不同
用于种族和种族亚组。其次,自杀企图和死亡可能被错误分类,并且
错误分类率可能因种族和种族而有所不同。第三,预测变量与
结果可能因种族和种族而异,即风险改变。
估计预测模型的现有方法并非旨在解决种族和种族差异
表现。估计程序的重点是优化整个人群的绩效,而不是在内
亚组和较少普遍的亚组的性能对总体准确性几乎没有影响。机器
学习方法,例如随机森林,探索预测因素与种族或种族之间的互动,自杀
尝试和死亡是罕见的事件,它限制了可用的信息来识别特定于种族和种族的信息
风险因素。对于预测研究的样本量计算也没有足够的指导。
我们将开发新的统计方法,以减少种族和种族差异的随机森林模型
通过解决当前方法中的差距来表现自杀预测模型。 AIM 1将发展新的
预测模型估算的程序,以最大程度地提高种族和种族的预测绩效
亚组,而不是最大化整个人群的平均表现。 AIM 2将集成
在预测模型估计和评估中调整差异结果错误分类的方法。目的
3将设计样本量计算,以确定研究是否能够准确预测
种族和种族亚组。我们将使用1500万的自杀危险因素和结果的现有数据
门诊精神健康,1000万个初级保健和200万个急诊室就诊
资助的心理健康研究网络以实施我们的方法并估算自杀预测模型
每个种族和种族中准确识别出自杀风险最高的患者的环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rebecca Yates Coley其他文献
Rebecca Yates Coley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rebecca Yates Coley', 18)}}的其他基金
Innovative methods to reduce racial and ethnic disparities in suicide risk prediction
减少自杀风险预测中种族和民族差异的创新方法
- 批准号:
10544150 - 财政年份:2022
- 资助金额:
$ 41.94万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 41.94万 - 项目类别:
The RaDIANT Health Systems Intervention for Equity in Kidney Transplantation
Radiant 卫生系统干预肾移植的公平性
- 批准号:
10681998 - 财政年份:2023
- 资助金额:
$ 41.94万 - 项目类别:
Regulation of human tendon development and regeneration
人体肌腱发育和再生的调节
- 批准号:
10681951 - 财政年份:2023
- 资助金额:
$ 41.94万 - 项目类别:
Toward Accurate Cardiovascular Disease Prediction in Hispanics/Latinos: Modeling Risk and Resilience Factors
实现西班牙裔/拉丁裔的准确心血管疾病预测:风险和弹性因素建模
- 批准号:
10852318 - 财政年份:2023
- 资助金额:
$ 41.94万 - 项目类别:
The impact of Medicaid expansion on the rural mortality penalty in the United States
医疗补助扩大对美国农村死亡率的影响
- 批准号:
10726695 - 财政年份:2023
- 资助金额:
$ 41.94万 - 项目类别: