Modular, Chemical-Free Advanced Oxidation of 1,4-Dioxane and its Co-Contaminants in Ground Water

地下水中 1,4-二恶烷及其共污染物的模块化、无化学品高级氧化

基本信息

  • 批准号:
    10361889
  • 负责人:
  • 金额:
    $ 22.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-07 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

ABSTRACT The ultimate goal of this remediation project is to design, fabricate, test, and implement point-of-use, small- scale, water treatment systems that can remove 1,4-dioxane (1,4-DX) and its frequently co-occurring contaminants, trichloroethylene (TCE), 1,1-dichloroethane (1,1-DCA) and 1,1,1,-trichloroethane (1,1,1-TCA), from contaminated ground water. The advanced oxidation process (AOP)–the process that employs highly reactive •OH as main oxidant–is considered to be the most effective among established water treatment methods for the destruction of these contaminants. However, enabling AOP in a small-scale, distributed system (i.e., in contrast to centralized large-scale treatment and water delivery through a network of pipe) is technically challenging due to the requirement for a precursor chemical (such as H2O2) that needs to be activated on site to produce •OH and the high energy demand. We will synthesize efficient catalyst materials, engineer various components of the system, and fabricate two highly-innovative prototype AOP reactors. The first reactor will employ a new catalyst that can selectively produce high concentrations of H2O2 using only water and oxygen as a source. The produced H2O2 will be activated by another newly-developed catalyst to produce •OH without any external energy/chemical supplies and without producing undesirable byproducts (which would otherwise require additional treatment). Coupled together, this catalytic system will enable for the first time AOP of ground water in a small, compact, distributed water treatment system. The second reactor will employ nanobubble technology. In this system, ambient air will be introduced to the water in the form of nanobubbles which collapse to produce •OH that will destroy 1,4-DX. Strategies to enhance the production of •OH through promotion of effective bubble collapse will be developed. Unlike any existing AOPs, both reactors will not require continuous supply of chemicals. In addition, they will either be solar powered (completely off-grid) or use a much smaller amount of electricity than conventional AOPs that employ ultraviolet (UV) irradiation. We will test the performance of prototype reactors and compare them with benchmark UV/H2O2 process (i.e., adding H2O2 and irradiating UV light). This will involve a comprehensive analysis of the efficiency of parent compound (1,4-DX) destruction, as well as the evolution of reaction byproducts. Reduction of the deleterious effects of consuming 1,4-DX-containing water will be investigated in collaboration with Research Project 1. The prototype reactors will undergo testing in select field sites in Region 1 (identified as being contaminated by Research Project 2) to determine their efficiency under real world situations and their activity under long term conditions (employing sensors developed by Research Project 3). By promoting the continual removal of 1,4-DX and its co-occurring contaminants from drinking water sources, this project will directly reduce human exposure to these pollutants and thereby limit their adverse health effects.
摘要 此补救项目的最终目标是设计、制造、测试和实施使用点、小型 可去除1,4-二恶烷(1,4-DX)及其频繁共生的水垢和水处理系统 污染物三氯乙烯(TCE)、1,1-二氯乙烷(1,1-DCA)和1,1,1-三氯乙烷(1,1,1-TCA), 来自受污染的地下水。高级氧化工艺(AOP)--高度利用 反应性·OH作为主要氧化剂-被认为是现有水处理中最有效的 销毁这些污染物的方法。然而,在小规模、分布式的环境中启用AOP 系统(即,与集中大规模处理和通过管网输送水不同)是 技术上具有挑战性,因为需要前体化学品(如过氧化氢) 现场被激活以产生·OH和高能量需求。 我们将合成高效催化剂材料,设计系统的各种组件,并 制造两个高度创新的AOP原型反应堆。第一个反应堆将使用一种新的催化剂,可以 仅使用水和氧气作为来源,选择性地产生高浓度的过氧化氢。产生的过氧化氢 将被另一种新开发的催化剂活化,在没有任何外部能量/化学物质的情况下产生·OH 不会产生不良的副产品(否则需要额外处理)。 结合在一起,这个催化系统将首次使AOP地下水在一个小,紧凑, 分布式水处理系统。第二个反应堆将采用纳米气泡技术。在这个系统中, 环境空气将以纳米气泡的形式引入水中,这些气泡坍塌产生·OH,这将 摧毁1,4-DX。通过促进有效气泡破裂来提高·OH产量的策略 将会被开发出来。与任何现有的AOPS不同,这两个反应堆都不需要连续供应化学品。在……里面 此外,它们要么是太阳能供电(完全脱离电网),要么使用的电力比 使用紫外线(UV)照射的传统AOPS。 我们将测试原型反应器的性能,并将它们与基准UV/H_2O_2进行比较 过程(即加入过氧化氢和照射紫外光)。这将涉及到对效率的全面分析 母体化合物(1,4-DX)的破坏以及反应副产物的演化。减少了 将与Research合作调查饮用1,4-DX水的有害影响 项目1.原型反应堆将在区域1的选定现场进行测试(确定为 被研究项目污染2)以确定它们在现实世界情况下的效率和它们的活动 在长期条件下(使用由研究项目3开发的传感器)。通过促进持续的 去除饮用水水源中的1,4-DX及其共生污染物,该项目将直接 减少人类对这些污染物的暴露,从而限制其对健康的不利影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jaehong Kim其他文献

Jaehong Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jaehong Kim', 18)}}的其他基金

Modular, Chemical-Free Advanced Oxidation of 1,4-Dioxane and its Co-Contaminants in Ground Water
地下水中 1,4-二恶烷及其共污染物的模块化、无化学品高级氧化
  • 批准号:
    10698027
  • 财政年份:
    2022
  • 资助金额:
    $ 22.99万
  • 项目类别:

相似海外基金

Development of low-energy direct air capture technique using moisture swing adsorption
开发利用水分变吸附的低能量直接空气捕获技术
  • 批准号:
    23K18535
  • 财政年份:
    2023
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
ELIMINATION OF AIRBORNE VOLATILE COMPOUNDS THROUGH INCORPORATION OF ADVANCED 3D NANOSTRUCTURED CATALYTIC COATINGS IN ADSORPTION/DECOMPOSITION AIR PURIFICATION SYSTEMS
通过在吸附/分解空气净化系统中采用先进的 3D 纳米结构催化涂层消除空气中的挥发性化合物
  • 批准号:
    10556402
  • 财政年份:
    2022
  • 资助金额:
    $ 22.99万
  • 项目类别:
ELIMINATION OF AIRBORNE VOLATILE COMPOUNDS THROUGH INCORPORATION OF ADVANCED 3D NANOSTRUCTURED CATALYTIC COATINGS IN ADSORPTION/DECOMPOSITION AIR PURIFICATION SYSTEMS
通过在吸附/分解空气净化系统中采用先进的 3D 纳米结构催化涂层消除空气中的挥发性化合物
  • 批准号:
    10384126
  • 财政年份:
    2022
  • 资助金额:
    $ 22.99万
  • 项目类别:
First principles modelling of adsorption cycles for direct air capture - PhD in Chemical Engineering.
直接空气捕获吸附循环的第一原理建模 - 化学工程博士。
  • 批准号:
    2896447
  • 财政年份:
    2021
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Studentship
Enhancing Adsorption of Lung Surfactants at the Air-Water Interface Using Methods from Colloid Stability Theory
利用胶体稳定性理论的方法增强肺表面活性剂在空气-水界面的吸附
  • 批准号:
    10338180
  • 财政年份:
    2020
  • 资助金额:
    $ 22.99万
  • 项目类别:
Enhancing Adsorption of Lung Surfactants at the Air-Water Interface Using Methods from Colloid Stability Theory
利用胶体稳定性理论的方法增强肺表面活性剂在空气-水界面的吸附
  • 批准号:
    10829103
  • 财政年份:
    2020
  • 资助金额:
    $ 22.99万
  • 项目类别:
ELIMINATION OF AIRBORNE VOLATILE COMPOUNDS THROUGH INCORPORATION OF ADVANCED 3D NANOSTRUCTURED CATALYTIC COATINGS IN ADSORPTION/DECOMPOSITION AIR PURIFICATION SYSTEMS
通过在吸附/分解空气净化系统中采用先进的 3D 纳米结构催化涂层消除空气中的挥发性化合物
  • 批准号:
    10011057
  • 财政年份:
    2020
  • 资助金额:
    $ 22.99万
  • 项目类别:
Enhancing Adsorption of Lung Surfactants at the Air-Water Interface Using Methods from Colloid Stability Theory
利用胶体稳定性理论的方法增强肺表面活性剂在空气-水界面的吸附
  • 批准号:
    9911287
  • 财政年份:
    2020
  • 资助金额:
    $ 22.99万
  • 项目类别:
Enhanced adsorption and regeneration of adsorbents for effective air pollution control and gas separation and purification
吸附剂的强化吸附和再生,有效控制空气污染和气体分离净化
  • 批准号:
    355738-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Discovery Grants Program - Individual
Enhanced adsorption and regeneration of adsorbents for effective air pollution control and gas separation and purification
吸附剂的强化吸附和再生,有效控制空气污染和气体分离净化
  • 批准号:
    355738-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了