Genome-wide mapping and characterization of exitrons in human cancer

人类癌症中激子的全基因组图谱和表征

基本信息

  • 批准号:
    10362364
  • 负责人:
  • 金额:
    $ 36.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

Project Summary & Abstract Advance in sequencing technology and computational algorithms revealed various alternative splicing variations in cancer transcriptome. Although several common classes of splicing events, such as exon skipping, intron retention and alternative splice sites, have been linked to tumor progression and therapy resistance, the roles of many non-canonical splicing events in cancer remain unknown due to the lack of dedicated approaches to detect and characterize these events. This proposal will focus on exitron splicing events because emerging evidence revealed they are dysregulated in cancer and occurred frequently in cancer-related genes. An exitron is an internal region within a coding exon that has splicing potential to create a cryptic intron. Splicing of exitron results in protein isoforms with altered sequences that may affect functional domains and post-translational modification sites. The observations of exitron splicing occurred in cancer genes suggest that exitron-spliced isoforms may contribute to cancer development. Furthermore, tumor- specific exitron splicing junctions resulting internal deletions or frameshifts may generate immunogenic peptides (i.e., neoantigens) that could form a basis for developing cancer vaccines or T-cell therapeutic targets. In this proposal, we will develop customized computational methods and conduct integrative multi- omics analysis with the goal to uncover the regulation of exitron splicing, driver exitron splicing events and neoantigens derived from tumor-specific exitrons in cancers. (Aim 1) We will develop an integrated framework to detect and validate exitrons with joint analysis of multi-omics data generated by multiple sequencing platforms. We will identify splicing factors that preferentially affect exitron splicing in cancers. (Aim 2) We will develop novel statistical approaches to identify genes and pathways enriched with exitron splicing alterations. We will implement a semi-supervised machine learning model to predict exitron splicing-associated cancer driver genes based on transcriptomic features. (Aim 3) We will develop a computational tool to identify splicing- derived neoantigens and validate them through mass spectrometry-based immunopeptidome data. We will assess the association of exitron splicing-derived neoantigens with clinical outcomes in patients receiving immune checkpoint inhibitor therapy. This project will provide a unique computational platform for dedicated exitron splicing analyses. The knowledge gained from this proposed study will help to understand the underlying mechanisms by which exitron alterations promote cancer progression. We expect that these analyses will be rapidly translated into clinical utility by providing new approaches to predict patient response in immune checkpoint inhibition therapies.
项目概要和摘要 测序技术和计算算法的进步揭示了多种可变剪接 癌症转录组的变异。尽管有几类常见的剪接事件,如外显子 跳跃、内含子保留和可变剪接位点与肿瘤进展和治疗有关 虽然许多非典型剪接事件在癌症中的作用仍然未知,因为缺乏对这些事件的了解。 专门的方法来检测和描述这些事件。这项提案将集中在激子拼接 事件,因为新出现的证据表明,它们在癌症中失调, 癌症相关基因外显子是编码外显子内的一个内部区域,具有剪接潜力, 一个隐藏的内含子外显子的剪接导致蛋白质同种型的序列改变,可能影响功能 结构域和翻译后修饰位点。在癌症中观察到的Exitron剪接 基因表明,外显子剪接的同种型可能有助于癌症的发展。此外,肿瘤- 产生内部缺失或移码的特异性出射子剪接连接可产生免疫原性 肽(即,新抗原),可以形成开发癌症疫苗或T细胞治疗的基础 目标的在这项提案中,我们将开发定制的计算方法,并进行综合的多 组学分析,目的是揭示出外显子剪接的调节,驱动外显子剪接事件, 来源于癌症中肿瘤特异性激子的新抗原。(Aim 1.我们将制定一个综合框架 通过多重测序产生的多组学数据的联合分析来检测和验证激子 平台我们将确定剪接因子,优先影响癌症中的exitron剪接。(Aim(2)我们将 开发新的统计方法,以确定基因和途径丰富的exitron剪接改变。 我们将实施一个半监督机器学习模型来预测exitron剪接相关的癌症 基于转录组学特征的驱动基因。(Aim 3)我们将开发一种计算工具来识别剪接- 衍生的新抗原,并通过基于质谱的免疫肽组数据验证它们。我们将 评估exitron剪接衍生的新抗原与接受 免疫检查点抑制剂疗法。该项目将提供一个独特的计算平台, 激子剪接分析。从这项拟议的研究中获得的知识将有助于了解 激子改变促进癌症进展的潜在机制。我们预计这些 通过提供新的方法来预测患者的反应, 免疫检查点抑制疗法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rendong Yang其他文献

Rendong Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rendong Yang', 18)}}的其他基金

Genome-wide mapping and characterization of exitrons in human cancer
人类癌症中激子的全基因组图谱和表征
  • 批准号:
    10631029
  • 财政年份:
    2022
  • 资助金额:
    $ 36.6万
  • 项目类别:
Computational approaches to delineate non-canonical splicing events
描述非规范剪接事件的计算方法
  • 批准号:
    10630854
  • 财政年份:
    2021
  • 资助金额:
    $ 36.6万
  • 项目类别:
Computational approaches to delineate non-canonical splicing events
描述非规范剪接事件的计算方法
  • 批准号:
    10618294
  • 财政年份:
    2021
  • 资助金额:
    $ 36.6万
  • 项目类别:
Computational approaches to delineate non-canonical splicing events
描述非规范剪接事件的计算方法
  • 批准号:
    10270575
  • 财政年份:
    2021
  • 资助金额:
    $ 36.6万
  • 项目类别:
Computational approaches to delineate non-canonical splicing events
描述非规范剪接事件的计算方法
  • 批准号:
    10797919
  • 财政年份:
    2021
  • 资助金额:
    $ 36.6万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 36.6万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 36.6万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 36.6万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 36.6万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 36.6万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 36.6万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 36.6万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 36.6万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 36.6万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.6万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了