Telomere dysfunction and telomerase reactivation in the etiology and progression of liver cancer

肝癌病因和进展中的端粒功能障碍和端粒酶再激活

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Mutations in telomerase and telomere attrition are major risk factors for liver fibrosis and its progression to hepatocellular carcinoma (HCC). However, due to a lack of adequate models and intrinsic difficulties in studying human telomerase in physiologically relevant cells, the molecular mechanisms responsible for liver fibrosis and cancer in settings of DNA damage arising from short telomeres remain elusive. While telomerase knockout mice corroborate the importance of telomere maintenance and DNA repair for liver function, the molecular mechanisms that govern liver abnormalities in patients with damaged telomeres are still unknown. Likewise, the specific signaling pathways that trigger failure of hepatic cells following telomere shortening and accumulation of DNA damage remain to be determined. In addition, mutations in the promoter region of the telomerase reverse transcriptase component (TERT) have been described as the initial and most prevalent mutation in HCC. While these mutations have been shown to reactivate telomerase, the functional relevance of this process during failure and transformation of hepatic cells has yet to be interrogated. The focus of this proposal is to use human pluripotent stem cells as a novel platform to understand the detrimental effects of mutant telomerase, telomere shortening and accumulation of DNA damage in different hepatic cell lineages. We have previously generated isogenic hPSC lines harboring several disease-specific mutations in telomerase and have successfully derived telomerase-mutant human hepatocytes and hepatic stellate cells in vitro, following established protocols that recapitulate the in vivo development of these lineages. Here, two specific aims are proposed that utilize this platform to understand the molecular consequences of telomere erosion, DNA damage, and telomerase impairment for the function of hepatic cells, and to determine their role during early stages of transformation. In Aim 1 we will determine the role of telomere shortening and DNA damage accumulation during fibrotic failure of different hepatic cell lineages with impaired telomerase. We will determine the extent to which mitigation of DNA damage, reactivation of HNF4α, and modulation p53 prevent fibrotic triggering in telomerase-mutant hepatocytes with variable telomere lengths. As liver fibrosis and its progression to HCC are multicellular responses we will determine the role of progressive telomere shortening during the direct and the paracrine fibrotic activation of hepatic stellate cells. In Aim 2, we will investigate the molecular consequences of mutations in the TERT promoter region during progression of HCC, in settings of exacerbated DNA damage due to eroded telomeres. Specifically, we will analyze the biochemical and functional consequences of mutations in the TERT promoter region for hepatocyte function and immortalization. These studies will determine the molecular mechanisms of liver fibrosis and its progression to HCC in settings of mutant telomerase and DNA damage. Our unique tools, combined with our expertise in telomerase, DNA repair, and stem cell biology puts us in an ideal position to make a significant impact in this field.
项目总结/摘要 端粒酶突变和端粒磨损是肝纤维化及其进展的主要危险因素 肝细胞癌(HCC)。然而,由于缺乏适当的模式和内在的困难, 研究人类端粒酶在生理相关的细胞,分子机制,负责肝脏 在由短端粒引起的DNA损伤的情况下的纤维化和癌症仍然是难以捉摸的。而端粒酶 基因敲除小鼠证实了端粒维持和DNA修复对肝功能的重要性, 在端粒受损的患者中,控制肝脏异常的分子机制仍然未知。 同样地,在端粒缩短后触发肝细胞衰竭的特定信号通路, DNA损伤的累积仍有待确定。此外,在启动子区的突变, 端粒酶逆转录酶组分(TERT)已被描述为初始的和最普遍的 HCC中的突变。虽然这些突变已被证明可以重新激活端粒酶,但端粒酶的功能相关性仍有待进一步研究。 肝细胞衰竭和转化过程中的这一过程还有待研究。 这项提案的重点是利用人类多能干细胞作为一个新的平台,以了解 突变的端粒酶、端粒缩短和DNA损伤的积累在不同的细胞中的有害作用, 肝细胞谱系。我们先前已经产生了具有几种疾病特异性的同源hPSC系。 端粒酶突变,并成功地衍生出端粒酶突变的人肝细胞和肝细胞。 星状细胞在体外,以下建立的协议,概括了这些谱系的体内发展。 在这里,提出了两个具体的目标,利用这个平台来了解分子的后果 端粒侵蚀,DNA损伤和端粒酶损伤对肝细胞功能的影响,并确定 在转型初期的作用。在目标1中,我们将确定端粒缩短的作用, 端粒酶受损的不同肝细胞系纤维化失败期间DNA损伤累积。我们 将决定DNA损伤的减轻、HNF 4 α的重新激活和p53的调节在多大程度上阻止了 端粒长度可变的端粒酶突变肝细胞中的纤维化触发。肝纤维化及其 进展为HCC是多细胞反应,我们将确定进行性端粒缩短的作用 在肝星状细胞的直接和旁分泌纤维化激活过程中。在目标2中,我们将研究 在HCC进展过程中,TERT启动子区突变的分子后果, 加剧了端粒受损造成的DNA损伤具体来说,我们将分析生物化学和功能 在肝细胞功能和永生化的TERT启动子区的突变的后果。 这些研究将确定肝纤维化及其进展为肝癌的分子机制。 突变端粒酶和DNA损伤的设置。我们独特的工具,结合我们在端粒酶方面的专业知识, DNA修复和干细胞生物学使我们处于一个理想的位置,在这一领域产生重大影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luis Francisco Zirnberger Batista其他文献

Luis Francisco Zirnberger Batista的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Luis Francisco Zirnberger Batista', 18)}}的其他基金

Telomere dysfunction and telomerase reactivation in the etiology and progression of liver cancer
肝癌病因和进展中的端粒功能障碍和端粒酶再激活
  • 批准号:
    10553663
  • 财政年份:
    2021
  • 资助金额:
    $ 36.03万
  • 项目类别:
MOLECULAR CONSEQUENCES OF TELOMERASE DYSFUNCTION DURING HEMATOPOIETIC DEVELOPMENT
造血发育过程中端粒酶功能障碍的分子后果
  • 批准号:
    10187638
  • 财政年份:
    2017
  • 资助金额:
    $ 36.03万
  • 项目类别:
MOLECULAR CONSEQUENCES OF TELOMERASE DYSFUNCTION DURING HEMATOPOIETIC DEVELOPMENT
造血发育过程中端粒酶功能障碍的分子后果
  • 批准号:
    9363584
  • 财政年份:
    2017
  • 资助金额:
    $ 36.03万
  • 项目类别:
Studying a bone marrow failure disease using patient-specific iPS cells
使用患者特异性 iPS 细胞研究骨髓衰竭疾病
  • 批准号:
    8819563
  • 财政年份:
    2014
  • 资助金额:
    $ 36.03万
  • 项目类别:
Studying a bone marrow failure disease using patient-specific iPS cells
使用患者特异性 iPS 细胞研究骨髓衰竭疾病
  • 批准号:
    8776045
  • 财政年份:
    2014
  • 资助金额:
    $ 36.03万
  • 项目类别:
Studying a bone marrow failure disease using patient-specific iPS cells
使用患者特异性 iPS 细胞研究骨髓衰竭疾病
  • 批准号:
    8353117
  • 财政年份:
    2012
  • 资助金额:
    $ 36.03万
  • 项目类别:
Studying a bone marrow failure disease using patient-specific iPS cells
使用患者特异性 iPS 细胞研究骨髓衰竭疾病
  • 批准号:
    8523966
  • 财政年份:
    2012
  • 资助金额:
    $ 36.03万
  • 项目类别:

相似海外基金

CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
  • 批准号:
    2339759
  • 财政年份:
    2024
  • 资助金额:
    $ 36.03万
  • 项目类别:
    Continuing Grant
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
  • 批准号:
    479334
  • 财政年份:
    2023
  • 资助金额:
    $ 36.03万
  • 项目类别:
    Operating Grants
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
  • 批准号:
    23H02481
  • 财政年份:
    2023
  • 资助金额:
    $ 36.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
  • 批准号:
    2320160
  • 财政年份:
    2023
  • 资助金额:
    $ 36.03万
  • 项目类别:
    Standard Grant
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
  • 批准号:
    10637251
  • 财政年份:
    2023
  • 资助金额:
    $ 36.03万
  • 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
  • 批准号:
    10604822
  • 财政年份:
    2023
  • 资助金额:
    $ 36.03万
  • 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
  • 批准号:
    10716621
  • 财政年份:
    2023
  • 资助金额:
    $ 36.03万
  • 项目类别:
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
  • 批准号:
    10655891
  • 财政年份:
    2023
  • 资助金额:
    $ 36.03万
  • 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
  • 批准号:
    10621634
  • 财政年份:
    2023
  • 资助金额:
    $ 36.03万
  • 项目类别:
EAGER: Elastic Electronics for Sensing Gut Luminal and Serosal Biochemical Release
EAGER:用于感测肠腔和浆膜生化释放的弹性电子器件
  • 批准号:
    2334134
  • 财政年份:
    2023
  • 资助金额:
    $ 36.03万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了