Mapping epistatic interactions in molecular evolution of antibiotic resistance
绘制抗生素耐药性分子进化中的上位相互作用
基本信息
- 批准号:10361439
- 负责人:
- 金额:$ 37.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-09 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffinityAlgorithmsAllelesAnti-Bacterial AgentsAntibiotic ResistanceAntibioticsAntimalarialsAutomobile DrivingBacteriaBasic ScienceBiochemicalBiological AssayCellsCellular Metabolic ProcessChemicalsClinicalClinical SciencesCompetitive BindingComputational BiologyComputer AnalysisDNA GyraseDNA-Directed RNA PolymeraseDataDihydrofolate ReductaseDihydrofolate Reductase InhibitorDoseDrug TargetingEnzymesEscherichia coliEvolutionFatty AcidsFolic AcidFree EnergyGenesGeneticGenetic EpistasisGlutamatesGoalsHealthHumanHybridsHydrogen BondingIn VitroLaboratoriesLeadLibrariesLigaseMapsMeasurementMethodsMolecularMolecular EvolutionMorbidity - disease rateMutationNMR SpectroscopyNamesNuclear Magnetic ResonancePathway interactionsPharmaceutical PreparationsPhenotypePlasmaPoint MutationPopulationProceduresProteinsPublic HealthReproducibilityResistanceRoleSamplingTailTestingTrimethoprimTrimethoprim ResistanceUrineVariantanti-cancerbacterial resistancebaseclinically relevantcombinatorialcomputerized toolscostdeep sequencingdesigndihydrofolatedrug-sensitiveexhaustionexperimental studyfitnessimprovedmolecular dynamicsmutantnext generation sequencingnovelnovel therapeuticspathogenic bacteriapreservationresistance mechanismsynthetic constructtool
项目摘要
PROJECT SUMMARY
Evolution of antibiotic resistance is a global public health problem. How evolution renders antibiotic
molecules ineffective by altering antibiotic targets is an interesting phenomenon from both clinical and basic
science perspectives. In pathogenic bacteria, there is only a handful of drug target enzymes such as DNA
gyrases, RNA polymerases, fatty acid synthetases, and enzymes involved in folic acid synthesis. Therefore, a
mechanistic understanding of resistance-conferring mutations in these enzymes is clinically critical for
designing new drugs or drug variants that can inhibit resistant bacteria.
In this project, we propose to study evolution of the Escherichia coli dihydrofolate reductase (DHFR)
enzyme and map epistatic interactions between DHFR mutations. DHFR is a ubiquitous enzyme with an
essential role in the folic acid synthesis pathway and is used as a drug target in antibacterial, anticancer, and
antimalarial therapies. In bacteria, an antibiotic named trimethoprim competitively binds to DHFR and blocks its
catalytic activity. Therefore, DHFR mutations that either confer resistance or compensate for reduced catalytic
activity of resistant DHFR mutants are selected for bacterial survival.
We will use laboratory evolution experiments to identify functional DHFR mutations and reproducible
genetic trajectories leading to elevated trimethoprim resistance. We will characterize these mutations by using
in vitro biochemical assays and deep-sequencing based fitness measurements for calculating epistatic
interactions between DHFR mutations. We will use molecular dynamics along with other computational tools
and nuclear magnetic resonance (NMR) spectroscopy to reveal structural changes responsible for resistance
and epistatic interactions. The combination of these approaches presents a unique opportunity to quantitatively
evaluate evolutionary paths leading to trimethoprim resistance and create a discovery pipeline for studying
protein evolution. By creating a deeper understanding for the evolutionary dynamics of an important drug target
enzyme, our proposal will develop experimental and computational tools for studying protein evolution with the
ultimate goal of improving human health. Indeed, our preliminary analyses suggest that we will be able to
design and test novel trimethoprim derivatives that can selectively inhibit DHFR mutants that carry the L28R
replacement, a common and synergistic DHFR mutation. We propose to synthesize trimethoprim-Dihydrofolate
hybrid molecules that will possess the salient structural features of both DHF and trimethoprim molecules
selectively inhibit DHFR mutants with the L28R replacement. We will evolve pan sensitive E. coli strains in the
morbidostat in order to quantify the efficacy of the mutant specific trimethoprim derivatives in impeding
resistance evolution and accordingly develop new strategies for better use of it.
项目摘要
抗生素耐药性的演变是一个全球性的公共卫生问题。进化如何使抗生素
通过改变抗生素靶点而无效的分子是临床和基础研究中的一个有趣现象。
科学观点。在致病菌中,只有极少数的药物靶向酶如DNA
促旋酶、RNA聚合酶、脂肪酸合成酶和参与叶酸合成的酶。因此
对这些酶的耐药突变机制的理解在临床上至关重要,
设计新的药物或药物变体,可以抑制耐药细菌。
在这个项目中,我们打算研究大肠杆菌二氢叶酸还原酶(DHFR)的进化
酶和地图之间的DHFR突变上位相互作用。DHFR是一种普遍存在的酶,
在叶酸合成途径中发挥重要作用,并用作抗菌、抗癌和抗肿瘤的药物靶点
抗疟疾疗法。在细菌中,一种名为甲氧苄啶的抗生素竞争性地与DHFR结合,
催化活性因此,DHFR突变,无论是赋予耐药性或补偿减少的催化
选择抗性DHFR突变体的活性用于细菌存活。
我们将使用实验室进化实验来鉴定功能性DHFR突变和可重复性。
导致甲氧苄啶耐药性升高的遗传轨迹。我们将通过使用
用于计算上位性的体外生物化学测定和基于深度测序的适合度测量
DHFR突变之间的相互作用。我们将使用分子动力学沿着与其他计算工具
和核磁共振(NMR)光谱,以揭示负责电阻的结构变化
和上位相互作用。这些方法的结合提供了一个独特的机会,
评估导致甲氧苄啶耐药性的进化路径,并为研究建立发现管道
蛋白质进化通过对一个重要药物靶点的进化动力学有更深入的了解,
酶,我们的建议将开发实验和计算工具,用于研究蛋白质进化与
改善人类健康的最终目标。事实上,我们的初步分析表明,我们将能够
设计和测试新型甲氧苄啶衍生物,可以选择性抑制携带L28 R的DHFR突变体
替代,一种常见的协同DHFR突变。我们建议合成甲氧苄啶-二氢叶酸
具有DHF和甲氧苄啶分子的显著结构特征的混合分子
选择性抑制具有L28 R置换的DHFR突变体。我们将进化出对泛敏感的E。大肠杆菌菌株
为了定量突变体特异性甲氧苄啶衍生物在阻碍
抗性进化,并相应地开发新的策略以更好地利用它。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erdal Toprak其他文献
Erdal Toprak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erdal Toprak', 18)}}的其他基金
Mapping epistatic interactions in molecular evolution of antibiotic resistance
绘制抗生素耐药性分子进化中的上位相互作用
- 批准号:
9894816 - 财政年份:2018
- 资助金额:
$ 37.27万 - 项目类别:
Mapping epistatic interactions in molecular evolution of antibiotic resistance
绘制抗生素耐药性分子进化中的上位相互作用
- 批准号:
10735464 - 财政年份:2018
- 资助金额:
$ 37.27万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 37.27万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 37.27万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 37.27万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 37.27万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 37.27万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 37.27万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 37.27万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 37.27万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 37.27万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 37.27万 - 项目类别:
Research Grant