Regulation of mechanosensitive ion channels by membrane lipids
膜脂对机械敏感离子通道的调节
基本信息
- 批准号:10200845
- 负责人:
- 金额:$ 32.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcidsAnimalsArchitectureArthrogryposisAtaxiaAtomic Force MicroscopyBinding SitesBiochemicalBlood PressureBlood VesselsCationsCell LineCell VolumesCell membraneCellsCholesterolCuesDataDefectDevelopmentDietary Fatty AcidDietary intakeDiseaseEicosapentaenoic AcidElectrophysiology (science)EmbryoEndothelial CellsErythrocyte volumeErythrocytesFamilyFatty AcidsFunctional disorderGoalsHemolytic AnemiaHereditary DiseaseHumanInheritedIon ChannelKnock-outKnowledgeLightLipidsMechanicsMediatingMembraneMembrane LipidsMembrane ProteinsMissionModalityMolecularMusMutationNerveNeural ConductionNeuronsOutcomePathway interactionsPermeabilityPhenotypePhosphatidylinositolsPhosphatidylserinesPhospholipidsPhysiological ProcessesPiezo 1 ion channelPiezo 2 ion channelPiezo ion channelsPolyunsaturated Fatty AcidsProprioceptionProteinsPublic HealthRegulationResearchSaturated Fatty AcidsSignal TransductionSite-Directed MutagenesisStimulusStretchingTestingTextTouch sensationTranslatingUnited States National Institutes of HealthVascular Endothelial Cellbasebiophysical techniquescell motilitydietaryeffective therapygain of functionhuman diseaseimprovedinnovationliquid chromatography mass spectrometryloss of function mutationmechanical forcemechanical propertiesmembermutantneuroblastoma cellpain sensationpatch clampresponsestomatocytic anemiatranslational impactvibration
项目摘要
Mechanosensitive ion channels rely on membrane composition to transduce physical stimuli into electrical signals. Piezo channels mediate mechanoelectrical transduction to regulate crucial physiological processes, including vascular architecture and remodeling, cell migration, erythrocyte volume, touch, vibration, and proprioception. Piezo1 and Piezo2 are essential proteins in mice, as global knockouts are embryonic lethal and cell-specific
knockouts result in animals with severe defects. In humans, Piezo channels gain- and loss-of-function mutations
have been associated with hereditary human pathophysiologies. Mutations in Piezo1 are associated with dehydrated hereditary stomatocytosis, a hemolytic anemia characterized by increased cation permeability and dehydrated erythrocytes. Hence, it is essential to determine the proteins and lipids that regulate Piezo channels gating
mechanisms. It has been shown that phosphoinositides and phosphatidylserine translocation regulate Piezo
channels activity. However, it remains largely unknown how dietary fatty acids-containing phospholipids modulate Piezo1 and Piezo2 mechanical gating. Our long-term goal is to determine the mechanisms underpinning
how bioactive lipids modulate mechanosensitive ion channels. In this proposal, the overall objective is to establish the molecular basis underlying Piezo channels modulation by dietary fatty acids. The central hypothesis is
that Piezo channels activation and inactivation are regulated by the mechanical properties of the membrane via
lipid remodeling. The rationale for the proposed research plan is that once the precise mechanisms are determined whereby fatty acids modulate Piezo channels function, it will be possible to use fatty acids to control
vascular function and ameliorate the effects of hereditary disorders. The hypothesis will be tested by pursuing
three Specific Aims: 1) Determine how fatty acid composition modulates Piezo1 activity through changes in
membrane stiffness; 2) Determine the effect of dietary fatty acids on Piezo1 mutations causing red blood cell
disorders; and 3) Test the hypothesis that saturated fatty acids decrease Piezo2 activation. We will leverage
functional, biochemical, and biophysical approaches to uncover the contribution of bioactive lipids to mechanosensation. The research plan is innovative because it exploits the use of dietary fatty acids to control Piezo
channels mechanical response. The proposed research is significant because it is expected to have broad translational impact in targeting Piezo channels, involved in vascular and neuronal function.
机械敏感离子通道依靠膜成分将物理刺激转化为电信号。压电通道介导机电转导来调节重要的生理过程,包括血管结构和重塑、细胞迁移、红细胞体积、触觉、振动和本体感觉。Piezo1和Piezo2在小鼠中是必需的蛋白,因为全局敲除是胚胎致命的和细胞特异性的
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Valeria Vasquez其他文献
Valeria Vasquez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Valeria Vasquez', 18)}}的其他基金
Regulation of mechanosensitive ion channels by membrane lipids
膜脂对机械敏感离子通道的调节
- 批准号:
10628121 - 财政年份:2019
- 资助金额:
$ 32.68万 - 项目类别:
Regulation of mechanosensitive ion channels by membrane lipids
膜脂对机械敏感离子通道的调节
- 批准号:
10984747 - 财政年份:2019
- 资助金额:
$ 32.68万 - 项目类别:
Regulation of mechanosensitive ion channels by membrane lipids
膜脂对机械敏感离子通道的调节
- 批准号:
9797240 - 财政年份:2019
- 资助金额:
$ 32.68万 - 项目类别:
Regulation of mechanosensitive ion channels by membrane lipids
膜脂对机械敏感离子通道的调节
- 批准号:
9978842 - 财政年份:2019
- 资助金额:
$ 32.68万 - 项目类别:
Regulation of mechanosensitive ion channels by membrane lipids
膜脂对机械敏感离子通道的调节
- 批准号:
10654797 - 财政年份:2019
- 资助金额:
$ 32.68万 - 项目类别:
Regulation of mechanosensitive ion channels by membrane lipids
膜脂对机械敏感离子通道的调节
- 批准号:
10425414 - 财政年份:2019
- 资助金额:
$ 32.68万 - 项目类别:
Regulation of mechanosensitive ion channels by membrane lipids
膜脂对机械敏感离子通道的调节
- 批准号:
10395049 - 财政年份:2019
- 资助金额:
$ 32.68万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 32.68万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 32.68万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 32.68万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 32.68万 - 项目类别:
Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
- 批准号:
2889694 - 财政年份:2023
- 资助金额:
$ 32.68万 - 项目类别:
Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 32.68万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 32.68万 - 项目类别:
Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 32.68万 - 项目类别:
Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 32.68万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 32.68万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)














{{item.name}}会员




