Renewal: Terahertz Polarization Imaging for Detecting Breast Tumor Margins

更新:用于检测乳腺肿瘤边缘的太赫兹偏振成像

基本信息

项目摘要

Project Summary/Abstract Breast-conserving therapy (lumpectomy) is one of the most commonly performed breast cancer surgeries in the United States. The best outcome of the lumpectomy surgery is achieved when the surgical margins are free of cancer. When remnants of cancer are detected at the surgical margins after the initial operation, a second operation will be required to remove the cancer. Unfortunately, a significant number of patients undergo breast conserving surgery (BCS) at local hospitals that do not have access to immediate on-site pathology leading to high rates of re-excision or reoperation (greater than 30%). Therefore, there is a significant need for new intraoperative technology that can be made available for local hospitals and outpatient clinics. Our previous research concludes that while terahertz studies in pre-clinical models have shown strong differentiation between cancerous and fatty tissues, the more clinically relevant differentiation between cancerous and healthy non-fatty tissue remains challenging. To further build upon the successes of our previous award and improve the sensitivity of terahertz imaging cancer detection on the surgical margins, we have identified areas where we can significantly improve the instrumentation, the animal model, and the image analysis algorithms. As part of this renewal application, we will re-design our instrumentation to develop terahertz polarization- sensitive imaging methodology. In this new approach, all four polarizations of the waves will be incorporated to increase the spatial and spectral information about different types of tumor tissues (Aim 1). We will test the system in vivo in a carcinogen-induced model of breast cancer in rats and use biological tissue simulating phantoms to determine the sources of signal generation in the THz images (Aim 2). Finally, we will improve the detection algorithm accuracy by exploiting the spatial information embedded in the terahertz images with spatial statistics (Aim 3). The goal is to better detect the presence of healthy fibrous tissue due to their potential growth of healthy collagen adjacent to cancerous tissues in tumors. We anticipate that the new proposed approach will increase the image contrast between cancerous and healthy adjacent tissues, leading to better differentiation and classification of cancer on the tumor margins. This renewal application will allow us to develop an optimized approach that leverages multiple polarizations, the spatial information encoded in the terahertz images for analysis, and the validation of our approach on mammary tumors from rats. The success of the proposed research will allow us to expand our work to clinical trials using clinically translational and compatible terahertz technology.
项目总结/文摘

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mammary tumors in Sprague Dawley rats induced by N-ethyl-N-nitrosourea for evaluating terahertz imaging of breast cancer
N-乙基-N-亚硝基脲诱导 Sprague Dawley 大鼠乳腺肿瘤用于评估乳腺癌太赫兹成像
  • DOI:
    10.1117/1.jmi.8.2.023504
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Vohra, Nagma;Chavez, Tanny;Troncoso, Joel R.;Rajaram, Narasimhan;Wu, Jingxian;Coan, Patricia N.;Jackson, Todd A.;Bailey, Keith;El-Shenawee, Magda
  • 通讯作者:
    El-Shenawee, Magda
A Phantom Study of Terahertz Spectroscopy and Imaging of Micro- and Nano-diamonds and Nano-onions as Contrast Agents for Breast Cancer.
  • DOI:
    10.1088/2057-1976/aa87c2
  • 发表时间:
    2017-10
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Bowman T;Walter A;Shenderova O;Nunn N;McGuire G;El-Shenawee M
  • 通讯作者:
    El-Shenawee M
Breast Cancer Detection with Low-dimension Ordered Orthogonal Projection in Terahertz Imaging.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Magda El-Shenawee其他文献

Magda El-Shenawee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

AI-based prediction of the belepharoptosis etiologies by means of machine learning algorithmic analysis of length-tensile force chart of levator muscle
通过提上睑肌长度-拉力图的机器学习算法分析,基于人工智能的上睑下垂病因预测
  • 批准号:
    22K09863
  • 财政年份:
    2022
  • 资助金额:
    $ 42.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2013
  • 资助金额:
    $ 42.45万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 42.45万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 42.45万
  • 项目类别:
    Discovery Grants Program - Individual
Unified Approach for Nanotechnology CAD/Computation by Algorithmic Analysis of Periodic Crystal Structures
通过周期性晶体结构的算法分析实现纳米技术 CAD/计算的统一方法
  • 批准号:
    22650002
  • 财政年份:
    2010
  • 资助金额:
    $ 42.45万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 42.45万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 42.45万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 42.45万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical & Algorithmic Analysis of Natural and Artificial DNA Sequences
数学
  • 批准号:
    0218568
  • 财政年份:
    2002
  • 资助金额:
    $ 42.45万
  • 项目类别:
    Standard Grant
Algorithmic Analysis and Congestion Control of Connection-Oriented Services in Large Scale Communication Networks.
大规模通信网络中面向连接的服务的算法分析和拥塞控制。
  • 批准号:
    9404947
  • 财政年份:
    1994
  • 资助金额:
    $ 42.45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了