Renewal: Terahertz Polarization Imaging for Detecting Breast Tumor Margins
更新:用于检测乳腺肿瘤边缘的太赫兹偏振成像
基本信息
- 批准号:10201049
- 负责人:
- 金额:$ 42.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-03-03 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Adipose tissueAlgorithmic AnalysisAlgorithmsAmbulatory Care FacilitiesAnimal ModelAreaAwardBiologicalBreastBreast Cancer ModelBreast Cancer PatientBreast CarcinomaBreast-Conserving SurgeryCancer DetectionCancerousCarcinogensClinicalClinical TrialsCollaborationsCollagenDataDetectionDiscriminationEnsureEthylnitrosoureaEvaluationExcisionFatty acid glycerol estersFrequenciesFutureGenerationsGoalsGrantGrowthHospitalsHumanHydration statusImageImage AnalysisImaging technologyIntelligenceLightLiquid substanceMalignant NeoplasmsMammary NeoplasmsMethodologyMethodsModelingMouse Mammary Tumor VirusOperative Surgical ProceduresOutcomePathologyPatientsPeer ReviewPre-Clinical ModelPublicationsRattusRepeat SurgeryResearchSamplingServicesSignal TransductionSiteSourceStatistical Data InterpretationStatistical MethodsSurgeonSurgical marginsSystemTechniquesTechnologyTestingTissue SampleTissuesTransgenic MiceTumor TissueUnited StatesUnited States National Institutes of HealthValidationVendorWomanWorkbreast cancer progressionbreast lumpectomycancer classificationcancer imagingcancer surgeryclinically relevantcontrast enhancedcontrast imagingdesignefficacy testingexperiencehigh riskhuman modelimagerimaging Segmentationimprovedin vivoinstrumentinstrumentationmalignant breast neoplasmnovel strategiesoperationpolarimetryprimary outcomespectroscopic imagingstatisticssuccesssymposiumtumortumor xenograft
项目摘要
Project Summary/Abstract
Breast-conserving therapy (lumpectomy) is one of the most commonly performed breast cancer surgeries
in the United States. The best outcome of the lumpectomy surgery is achieved when the surgical margins are
free of cancer. When remnants of cancer are detected at the surgical margins after the initial operation, a second
operation will be required to remove the cancer. Unfortunately, a significant number of patients undergo breast
conserving surgery (BCS) at local hospitals that do not have access to immediate on-site pathology leading to
high rates of re-excision or reoperation (greater than 30%). Therefore, there is a significant need for new
intraoperative technology that can be made available for local hospitals and outpatient clinics. Our previous
research concludes that while terahertz studies in pre-clinical models have shown strong differentiation between
cancerous and fatty tissues, the more clinically relevant differentiation between cancerous and healthy non-fatty
tissue remains challenging. To further build upon the successes of our previous award and improve the sensitivity
of terahertz imaging cancer detection on the surgical margins, we have identified areas where we can
significantly improve the instrumentation, the animal model, and the image analysis algorithms.
As part of this renewal application, we will re-design our instrumentation to develop terahertz polarization-
sensitive imaging methodology. In this new approach, all four polarizations of the waves will be incorporated to
increase the spatial and spectral information about different types of tumor tissues (Aim 1). We will test the
system in vivo in a carcinogen-induced model of breast cancer in rats and use biological tissue simulating
phantoms to determine the sources of signal generation in the THz images (Aim 2). Finally, we will improve the
detection algorithm accuracy by exploiting the spatial information embedded in the terahertz images with spatial
statistics (Aim 3). The goal is to better detect the presence of healthy fibrous tissue due to their potential growth
of healthy collagen adjacent to cancerous tissues in tumors. We anticipate that the new proposed approach will
increase the image contrast between cancerous and healthy adjacent tissues, leading to better differentiation
and classification of cancer on the tumor margins. This renewal application will allow us to develop an optimized
approach that leverages multiple polarizations, the spatial information encoded in the terahertz images for
analysis, and the validation of our approach on mammary tumors from rats. The success of the proposed
research will allow us to expand our work to clinical trials using clinically translational and compatible terahertz
technology.
项目总结/文摘
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deep Learning Classification of Breast Cancer Tissue from Terahertz Imaging Through Wavelet Synchro-Squeezed Transformation and Transfer Learning.
- DOI:10.1007/s10762-021-00839-x
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Mammary tumors in Sprague Dawley rats induced by N-ethyl-N-nitrosourea for evaluating terahertz imaging of breast cancer
N-乙基-N-亚硝基脲诱导 Sprague Dawley 大鼠乳腺肿瘤用于评估乳腺癌太赫兹成像
- DOI:10.1117/1.jmi.8.2.023504
- 发表时间:2021
- 期刊:
- 影响因子:2.4
- 作者:Vohra, Nagma;Chavez, Tanny;Troncoso, Joel R.;Rajaram, Narasimhan;Wu, Jingxian;Coan, Patricia N.;Jackson, Todd A.;Bailey, Keith;El-Shenawee, Magda
- 通讯作者:El-Shenawee, Magda
A Phantom Study of Terahertz Spectroscopy and Imaging of Micro- and Nano-diamonds and Nano-onions as Contrast Agents for Breast Cancer.
- DOI:10.1088/2057-1976/aa87c2
- 发表时间:2017-10
- 期刊:
- 影响因子:1.4
- 作者:Bowman T;Walter A;Shenderova O;Nunn N;McGuire G;El-Shenawee M
- 通讯作者:El-Shenawee M
Breast Cancer Detection with Low-dimension Ordered Orthogonal Projection in Terahertz Imaging.
- DOI:10.1109/tthz.2019.2962116
- 发表时间:2020-03
- 期刊:
- 影响因子:3.2
- 作者:Chavez T;Vohra N;Wu J;Bailey K;El-Shenawee M
- 通讯作者:El-Shenawee M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Magda El-Shenawee其他文献
Magda El-Shenawee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
AI-based prediction of the belepharoptosis etiologies by means of machine learning algorithmic analysis of length-tensile force chart of levator muscle
通过提上睑肌长度-拉力图的机器学习算法分析,基于人工智能的上睑下垂病因预测
- 批准号:
22K09863 - 财政年份:2022
- 资助金额:
$ 42.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2013
- 资助金额:
$ 42.45万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2012
- 资助金额:
$ 42.45万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2011
- 资助金额:
$ 42.45万 - 项目类别:
Discovery Grants Program - Individual
Unified Approach for Nanotechnology CAD/Computation by Algorithmic Analysis of Periodic Crystal Structures
通过周期性晶体结构的算法分析实现纳米技术 CAD/计算的统一方法
- 批准号:
22650002 - 财政年份:2010
- 资助金额:
$ 42.45万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2010
- 资助金额:
$ 42.45万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2009
- 资助金额:
$ 42.45万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2008
- 资助金额:
$ 42.45万 - 项目类别:
Discovery Grants Program - Individual
Mathematical & Algorithmic Analysis of Natural and Artificial DNA Sequences
数学
- 批准号:
0218568 - 财政年份:2002
- 资助金额:
$ 42.45万 - 项目类别:
Standard Grant
Algorithmic Analysis and Congestion Control of Connection-Oriented Services in Large Scale Communication Networks.
大规模通信网络中面向连接的服务的算法分析和拥塞控制。
- 批准号:
9404947 - 财政年份:1994
- 资助金额:
$ 42.45万 - 项目类别:
Standard Grant