The Disease Ontology Project: mechanistic profiles of human disease for biomedical and clinical research
疾病本体项目:用于生物医学和临床研究的人类疾病的机制概况
基本信息
- 批准号:10204783
- 负责人:
- 金额:$ 65.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-14 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAllelesAnatomyAnimal ModelAreaBiomedical ResearchClassificationClinicalClinical DataClinical ResearchCommunitiesComplexCouplingDataData AnalysesData ElementDatabasesDepositionDevelopmentDiseaseDrug TargetingEducationEducational workshopEnsureEnvironmental ExposureEnvironmental Risk FactorEpitopesEtiologyExposure toGap JunctionsGene TargetingGenesGeneticGenetic ResearchGenetic VariationGenomic medicineGenomicsGoalsImmuneKnowledgeLinkLiteratureMalignant NeoplasmsMedical GeneticsMolecularNCI ThesaurusNeeds AssessmentNomenclatureOnline Mendelian Inheritance In ManOntologyPathogenesisPathway interactionsPersonsPharmaceutical PreparationsPhenotypePubMedPublic HealthPublicationsPublishingRare DiseasesResearchResearch PersonnelResearch Project GrantsResourcesSemanticsServicesSpecialistStandardizationStudentsSymptomsSystemTerminologyUpdateVariantVocabularybasebiomedical ontologycancer geneticscancer subtypesclinical careclinically relevantcomparativecomputerized toolsdata integrationdata integritydata repositorydisease classificationdrug repurposingeducation resourcesexperimental studyflexibilitygenetic resourcegenetic variantgenome annotationhuman diseaseimprovedinsightknowledge baselensmodel organisms databasesnoveloutreachresearch and developmentresponsestatisticssymposiumtooltraining opportunitytransmission processweb interface
项目摘要
Human disease data is a cornerstone of biomedical research for identifying drug targets,
connecting genetic variations to phenotypes, understanding molecular pathways relevant to
novel treatments and coupling clinical care and biomedical research. Consequently, there is a
significant need for a standardized representation of human disease to connect disease
concepts across resources, to support development of computational tools that will enable
robust data analysis and integration and to continually incorporate new insights regarding our
understanding of disease pathogenesis. For the past 13 years, the Disease Ontology team has
been focusing on developing and applying an etiology based Human Disease Ontology (DO)
and providing the biomedical community with a knowledgebase of integrated rare and common
disease terms to support disease annotations for genomes, genes, genetic variants, associated
biomedical data and literature. Conservatively, based on available resource statistics, terms
from the DO have been annotated to over 150,000 biomedical data elements and citations.
We have developed the DO, representing 6,782 human diseases and the DO web interface
(http://www.disease-ontology.org) and RESTful API to enable semantic exploration of disease
etiology and aligned disease concepts representing 36,711 clinical vocabulary cross-
references. The 10-fold increase of the number of published clinical and experimental studies
per year (PubMed: Clinical Study) in the past four decades, with 43,401 PubMed articles in
2014 compared to 3,269 in 1975, has markedly expanded our understanding of disease
mechanisms. We have identified two main areas of improvement in the DO (1.0) necessary to
represent this growing body of knowledge: (1) representing cellular, molecular and
environmental mechanisms of disease as distinct disease profiles within the DO and (2)
representing alternative classifications of complex disease in order to address clinical use cases
for complex diseases. We thus propose to develop the DO (2.0), an integrative disease
mechanism framework for disease characterization and annotation, with the goal to represent
distinct disease profiles and improve upon the existing single profile (DO 1.0) or mixed profile
classifications (ORDO, NCIthesaurus, MonDO). We believe DO (2.0) will provide both genomic
and clinical research communities with a versatile system that will enable researchers to
perform more accurate and comprehensive analysis of common cellular, molecular or
environmental disease mechanisms. Utilization of the DO will be promoted in the clinical and
biomedical communities through high profile publications, conferences and workshops.
人类疾病数据是确定药物靶点的生物医学研究的基石,
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The DO-KB Knowledgebase: a 20-year journey developing the disease open science ecosystem.
- DOI:10.1093/nar/gkad1051
- 发表时间:2024-01-05
- 期刊:
- 影响因子:14.9
- 作者:
- 通讯作者:
Modeling the enigma of complex disease etiology.
- DOI:10.1186/s12967-023-03987-x
- 发表时间:2023-02-25
- 期刊:
- 影响因子:7.4
- 作者:Schriml, Lynn M. M.;Lichenstein, Richard;Bisordi, Katharine;Bearer, Cynthia;Baron, J. Allen;Greene, Carol
- 通讯作者:Greene, Carol
A decade of GigaScience: 10 years of the evolving genomic and biomedical standards landscape.
- DOI:10.1093/gigascience/giac047
- 发表时间:2022-05-17
- 期刊:
- 影响因子:9.2
- 作者:
- 通讯作者:
Diseasomics: Actionable machine interpretable disease knowledge at the point-of-care.
- DOI:10.1371/journal.pdig.0000128
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
The Human Disease Ontology 2022 update.
- DOI:10.1093/nar/gkab1063
- 发表时间:2022-01-07
- 期刊:
- 影响因子:14.9
- 作者:Schriml LM;Munro JB;Schor M;Olley D;McCracken C;Felix V;Baron JA;Jackson R;Bello SM;Bearer C;Lichenstein R;Bisordi K;Dialo NC;Giglio M;Greene C
- 通讯作者:Greene C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lynn Marie Schriml其他文献
Lynn Marie Schriml的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lynn Marie Schriml', 18)}}的其他基金
The Human Disease Ontology: An integrated, mechanistic knowledge resource for biomedical research.
人类疾病本体论:生物医学研究的综合机械知识资源。
- 批准号:
10697379 - 财政年份:2022
- 资助金额:
$ 65.54万 - 项目类别:
The Disease Ontology Project: mechanistic profiles of human disease for biomedical and clinical research
疾病本体项目:用于生物医学和临床研究的人类疾病的机制概况
- 批准号:
10204787 - 财政年份:2017
- 资助金额:
$ 65.54万 - 项目类别:
The Disease Ontology Project: mechanistic profiles of human disease for biomedical and clinical research
疾病本体项目:用于生物医学和临床研究的人类疾病的机制概况
- 批准号:
10204784 - 财政年份:2017
- 资助金额:
$ 65.54万 - 项目类别:
The Disease Ontology Project: mechanistic profiles of human disease for biomedical and clinical research
疾病本体项目:用于生物医学和临床研究的人类疾病的机制概况
- 批准号:
10204785 - 财政年份:2017
- 资助金额:
$ 65.54万 - 项目类别:
The Disease Ontology Project: mechanistic profiles of human disease for biomedical and clinical research
疾病本体项目:用于生物医学和临床研究的人类疾病的机制概况
- 批准号:
9977227 - 财政年份:2017
- 资助金额:
$ 65.54万 - 项目类别:
The Disease Ontology Project: mechanistic profiles of human disease for biomedical and clinical research
疾病本体项目:用于生物医学和临床研究的人类疾病的机制概况
- 批准号:
9977234 - 财政年份:
- 资助金额:
$ 65.54万 - 项目类别:
The Disease Ontology Project: mechanistic profiles of human disease for biomedical and clinical research
疾病本体项目:用于生物医学和临床研究的人类疾病的机制概况
- 批准号:
9278363 - 财政年份:
- 资助金额:
$ 65.54万 - 项目类别:
The Disease Ontology Project: mechanistic profiles of human disease for biomedical and clinical research
疾病本体项目:用于生物医学和临床研究的人类疾病的机制概况
- 批准号:
9977237 - 财政年份:
- 资助金额:
$ 65.54万 - 项目类别:
The Disease Ontology Project: mechanistic profiles of human disease for biomedical and clinical research
疾病本体项目:用于生物医学和临床研究的人类疾病的机制概况
- 批准号:
9278361 - 财政年份:
- 资助金额:
$ 65.54万 - 项目类别:
The Disease Ontology Project: mechanistic profiles of human disease for biomedical and clinical research
疾病本体项目:用于生物医学和临床研究的人类疾病的机制概况
- 批准号:
9977236 - 财政年份:
- 资助金额:
$ 65.54万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 65.54万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 65.54万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 65.54万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 65.54万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 65.54万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 65.54万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 65.54万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 65.54万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 65.54万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 65.54万 - 项目类别:
Continuing Grant