Mapping Neural Connectivity in Zebrafish Larvae Using a Photoconvertible Protein
使用光转换蛋白绘制斑马鱼幼虫的神经连接图
基本信息
- 批准号:10206190
- 负责人:
- 金额:$ 11.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAlzheimer&aposs DiseaseAnimal ModelAnimalsBase of the BrainBehaviorBehavioralBiologicalBiological ModelsBrainBrain DiseasesBrain MappingCaenorhabditis elegansDataDevelopmentDiseaseDrug AddictionDrug ScreeningEtiologyExtracellular Signal Regulated KinasesFertilityFishesFunctional disorderGoalsHumanInvertebratesInvestigationLarvaLearningMAP Kinase GeneMapsMeasuresMemoryMental disordersMethodsModelingModernizationModificationMolecularMolecular StructureMusNeurodevelopmental DisorderNeurological ModelsNeuronal PlasticityNeuronsNeurosciencesOrganismPathologyPhysiologicalPopulationPost-Traumatic Stress DisordersProceduresPropertyProteinsReportingResearch PersonnelSchizophreniaSignal TransductionSystemTechnologyTimeTransgenic OrganismsUnited States National Institutes of HealthVertebratesZebrafishautism spectrum disordercalcium indicatorconnectomeeffective therapyexperimental studyhigh throughput screeninghuman modelin vivointerestnervous system disorderneural circuitneuropsychiatric disordernovel therapeuticspromoterrelating to nervous systemresponsesensory systemtherapy developmenttoolusability
项目摘要
PROJECT SUMMARY
Creation of whole-brain functional connectomes will facilitate a holistic understanding of memory
formation, which is a major goal of modern neuroscience. Information gained from understanding the functional
connections between neurons and the underlying plasticity between connections can be used to understand
and treat neurological and mental disorders.
In vivo whole-brain mapping with current technologies requires advantageous biological attributes in
combination with a substantial molecular toolbox. Two invertebrate model organisms have these properties: D.
melanogaster and C. elegans. However, zebrafish (Danio rerio) is the only vertebrate species with this
capacity. The ability to form a functional connectome with larval zebrafish affords distinct advantages to
understanding memory formation or pinpointing aberrant neural circuits in animal models of human disorders.
Further, rapid development, small size, and high fecundity of zebrafish makes them an ideal organism for high-
throughput screening, a useful mechanism to discover novel therapeutics for these disorders.
The project will attempt to create a new tool to rapidly form in vivo whole-brain connectomes in freely
moving fish with the long-term goal of understanding brain function and dysfunction at a circuit-level. Towards
this goal, we will create transgenic fish that express a photoconvertible protein under the control of activity-
dependent promoters. We will then determine the experimental procedures for each line of transgenic fish that
most efficiently and accurately reflect the neural activity under investigation and minimize signals related to
nonspecific neural activity. After we have defined the experimental potential and constraints of our transgenic
lines of fish, we will seek to determine if the recorded neural activity is physiologically valid. To do so, we will
form functional maps of neural activity in response to stimulation of sensory systems with previously defined
neural connections. These experiments should provide the pilot data necessary to begin investigating changes
in functional connectomes due to memory formation in zebrafish models of neurodevelopmental disorders.
Data from the proposed studies are expected to facilitate the development of effective treatments for
brain diseases and disorders, including Alzheimer's disease, PTSD, schizophrenia and autism.
项目摘要
全脑功能连接体的建立将促进对记忆的整体理解
形成,这是现代神经科学的主要目标。从了解功能中获得的信息
神经元之间的连接和连接之间潜在的可塑性可以用来理解
治疗神经和精神疾病
利用当前技术的体内全脑映射需要有利的生物属性,
与大量分子工具箱相结合。两种无脊椎模式生物具有这些特性:D.
黑腹果蝇和C.优雅的然而,斑马鱼(Danio rerio)是唯一具有这种功能的脊椎动物物种
容量斑马鱼幼鱼形成功能性连接体的能力,
理解记忆的形成或在人类疾病的动物模型中精确定位异常的神经回路。
此外,斑马鱼的快速发育,小尺寸和高繁殖力使其成为高繁殖力的理想生物。
通量筛选,一个有用的机制,发现新的治疗这些疾病。
该项目将尝试创建一种新工具,在体内自由快速形成全脑连接体
移动鱼的长期目标是了解大脑功能和功能障碍的电路水平。朝向
为了实现这一目标,我们将创造出转基因鱼,它能在活性控制下表达一种可光转化的蛋白质,
依赖性启动子然后,我们将确定每种转基因鱼的实验程序,
最有效和准确地反映所研究的神经活动,并最大限度地减少与
非特异性神经活动在我们确定了我们的转基因的实验潜力和限制之后,
我们将试图确定记录的神经活动是否在生理上有效。为此,我们将
形成神经活动的功能图,以响应先前定义的感觉系统的刺激
神经连接这些实验应该为开始调查变化提供必要的试验数据
在神经发育障碍的斑马鱼模型中,由于记忆的形成,功能性连接体。
预计拟议研究的数据将有助于开发有效的治疗方法,
大脑疾病和紊乱,包括阿尔茨海默病、创伤后应激障碍、精神分裂症和自闭症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Christopher Roberts其他文献
Adam Christopher Roberts的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Christopher Roberts', 18)}}的其他基金
Mapping Neural Connectivity in Zebrafish Larvae Using a Photoconvertible Protein
使用光转换蛋白绘制斑马鱼幼虫的神经连接图
- 批准号:
10437658 - 财政年份:2020
- 资助金额:
$ 11.11万 - 项目类别:
Postsynaptic Cellular Mechanisms of Learning in Aplysia
海兔的突触后细胞学习机制
- 批准号:
6585209 - 财政年份:2003
- 资助金额:
$ 11.11万 - 项目类别:
Postsynaptic Cellular Mechanisms of Learning in Aplysia
海兔的突触后细胞学习机制
- 批准号:
6659108 - 财政年份:2003
- 资助金额:
$ 11.11万 - 项目类别:














{{item.name}}会员




