Neurophysiological Mechanisms of Recovery of Consciousness
意识恢复的神经生理学机制
基本信息
- 批准号:10208897
- 负责人:
- 金额:$ 35.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAnesthesia proceduresAnestheticsArousalAwarenessBehaviorBrainCell NucleusCharacteristicsCluster AnalysisCognitionConsciousDataDeliriumDevelopmentDimensionsEventExhibitsFunctional disorderGoalsHalothaneHealth Care CostsHypothalamic structureIsofluraneKetamineLeadLength of StayMeasuresMediatingMethodologyMonitorMorbidity - disease rateNeuronsOperative Surgical ProceduresOutputPathway interactionsPatientsPatternPharmacologyPlayPontine structurePopulationPost-Traumatic Stress DisordersProcessPropofolPublic HealthRecoveryResearchRiskRoleSleepSpeedSynapsesSystemTestingThalamic structureWakefulnessWorkbaseclinical practicecognitive functionexperienceinnovationlocus ceruleus structureneurophysiologynoradrenergicoptogeneticsprematurepreventtargeted treatmenttool
项目摘要
Project Summary
The long-term goal of this research is to elucidate neuronal mechanisms that allow the brain to recover
consciousness and cognition after anesthesia. Some patients recover consciousness prematurely during
surgery. Intraoperative awareness is associated with a significant risk of post-traumatic stress disorder. Others
conversely, do not recover cognitive function long after anesthetics have been discontinued. Delayed recovery
is associated with higher morbidity, longer hospital stays, and increased healthcare costs. While brain activity
monitors have been used for decades to mitigate these peri-anesthetic complications, current monitors of brain
activity are inadequate. Anesthetic awareness cannot be reliably detected or prevented and delayed recovery
of cognition affects a large fraction of patients who undergo anesthesia.
All existing brain activity monitors assume that depth of anesthesia is a continuous one-dimensional
measure closely tied to the anesthetic concentration. In contrast, we show that during recovery of
consciousness after isoflurane thalamocortical system abruptly transitions among a small number of discrete
activity patterns. Transitions among discrete activity patterns persist even when anesthetic concentration is
fixed. While many such transitions occur during recovery, all paths towards wakefulness funnel through a small
subset of discrete activity patterns. Our central hypothesis is that: Transitions among a small number of
discrete activity patterns is a universal feature of recovery from anesthesia and that directed
disturbances of such transitions delay or accelerate recovery. In Aim 1 we will directly record neuronal
activity in the cortex and thalamus during recovery from different anesthetics. We will detect and quantify
transitions among discrete activity patterns using robust statistical methodology developed and validated
recently in our lab. In Aims 2 and 3 we will use a combination of direct recordings of neuronal activity and
precise optogenetic perturbations to determine the role of orexinergic and noradrenergic neuronal pathways in
mediating transitions between different discrete activity patterns. We hypothesize that by manipulating these
arousal pathways will be able to either accelerate or conversely impede recovery. This contribution is
significant because we propose to provide an unprecedented ability to monitor and influence the anesthetic
state. In the short term, this work may lead to the development of robust means of monitoring brain activity
under anesthesia. In the long run, identification of neuronal mechanisms responsible for transitions among
discrete activity patterns may lead to the development of targeted therapies for preventing unintended
awareness and accelerating recovery after anesthesia. The proposed research is innovative because by
focusing on mechanisms underlying abrupt transitions between discrete activity patterns we will identify
previously unknown neuronal processes that sculpt the recovery of consciousness after anesthesia.
项目概要
这项研究的长期目标是阐明让大脑恢复的神经机制
麻醉后的意识和认知。部分患者在治疗过程中过早恢复意识
外科手术。术中意识与创伤后应激障碍的显着风险相关。其他的
相反,在停止麻醉后很长时间内认知功能也不会恢复。延迟恢复
与较高的发病率、较长的住院时间和增加的医疗费用有关。当大脑活动时
几十年来,监视器一直用于减轻这些围麻醉期并发症,目前的脑监视器
活动不够充分。无法可靠地检测或预防麻醉意识并延迟恢复
认知能力的下降影响着大部分接受麻醉的患者。
所有现有的大脑活动监视器都假设麻醉深度是连续的一维
测量与麻醉浓度密切相关。相比之下,我们表明在恢复期间
异氟烷后,丘脑皮质系统的意识突然在少数离散的
活动模式。即使麻醉剂浓度不同,离散活动模式之间的转变仍然存在。
固定的。虽然许多这样的转变发生在恢复期间,但所有通往觉醒的路径都通过一个小的漏斗
离散活动模式的子集。我们的中心假设是:少数人之间的转变
离散的活动模式是麻醉恢复的普遍特征,并指导
这种转变的干扰会延迟或加速恢复。在目标 1 中,我们将直接记录神经元
从不同麻醉剂恢复期间皮质和丘脑的活动。我们将检测并量化
使用开发和验证的稳健统计方法在离散活动模式之间进行转换
最近在我们的实验室。在目标 2 和 3 中,我们将结合使用神经元活动的直接记录和
精确的光遗传学扰动以确定食欲素能和去甲肾上腺素能神经元通路的作用
调解不同离散活动模式之间的转换。我们假设通过操纵这些
唤醒途径将能够加速或相反地阻碍恢复。这个贡献是
意义重大,因为我们建议提供前所未有的监测和影响麻醉的能力
状态。从短期来看,这项工作可能会导致开发出强大的大脑活动监测方法
在麻醉下。从长远来看,识别负责之间转换的神经元机制
离散的活动模式可能会导致靶向疗法的开发,以预防意外的发生
意识并加速麻醉后的恢复。拟议的研究具有创新性,因为
重点关注离散活动模式之间突然转变的机制,我们将确定
以前未知的神经元过程塑造了麻醉后意识的恢复。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Proekt其他文献
Alexander Proekt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Proekt', 18)}}的其他基金
Neurophysiological Mechanisms of Recovery of Consciousness
意识恢复的神经生理学机制
- 批准号:
10417131 - 财政年份:2018
- 资助金额:
$ 35.79万 - 项目类别:
Neurophysiological Mechanisms of Recovery of Consciousness
意识恢复的神经生理学机制
- 批准号:
9752611 - 财政年份:2018
- 资助金额:
$ 35.79万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 35.79万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 35.79万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 35.79万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 35.79万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 35.79万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 35.79万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 35.79万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 35.79万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 35.79万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 35.79万 - 项目类别:
Continuing Grant














{{item.name}}会员




