Metabolic control of exit from naïve pluripotency

退出幼稚多能性的代谢控制

基本信息

项目摘要

PROJECT SUMMARY Cellular metabolic pathways exhibit remarkable plasticity across different cell types in both development and disease. In addition to accompanying changes in cell state, metabolic rewiring has been shown to drive cell fate decisions programs by altering the chromatin landscape. The deposition of chemical modifications that decorate chromatin requires the intermediates of metabolic pathways, and several enzymes that remove these marks use metabolites as part of their enzymatic reaction. Therefore, fluctuations in metabolite levels have the capacity to shape chromatin to effect cell fate-specific gene expression, but the metabolic changes that drive chromatin reorganization and the enzymes that mediate metabolic control of cell fate during early development remain largely unknown. We have previously identified specific metabolites that control self-renewal of mouse embryonic stem cells (ESCs). Whether metabolism is altered as ESCs exit the self-renewing pluripotent state, and whether these metabolic changes are required for multi-lineage differentiation remains an open question. The goal of this research proposal is to characterize the metabolic rewiring that occurs during exit from naïve pluripotency and to determine the mechanisms by which this rewiring controls mouse ESC differentiation. Our preliminary data indicate that exit from naïve pluripotency is accompanied by an increase in the mitochondrial export of citrate. In Aim 1, we will use genetic and pharmacologic approaches to target the mitochondrial citrate transporter SLC25A1 or the downstream citrate-catabolizing enzyme ATP-citrate lyase to test the hypothesis that mitochondrially-derived citrate is required for early differentiation. We will investigate whether this metabolic change regulates cell fate through the deposition of citrate-derived histone acetylation marks. Preliminary data also shows changes in cellular redox state marked by an increase in the cytosolic NAD+/NADH ratio during early differentiation. In Aim 2, we will determine if this metabolic change is required for exit from naïve pluripotency by modulating the NAD+/NADH ratio using pharmacological or genetic tools. Further experiments will identify the mechanism by which cellular redox state signals to the chromatin landscape to dictate cell fate. These studies will reveal the mechanisms of metabolic control during exit from naïve pluripotency and will provide critical insight into how metabolic regulation contributes to changes in cell identity during embryonic development. The work and training plan outlined in this proposal will be completed in the laboratory of Dr. Lydia Finley with the co-advisement of Dr. Kristian Helin at Memorial Sloan Kettering Cancer Center and will ideally prepare the applicant for further clinical training and a career as an independent physician-scientist.
项目总结 细胞代谢途径在发育和发育过程中的不同细胞类型之间显示出显著的可塑性 疾病。除了伴随着细胞状态的变化,新陈代谢的重新连接也被证明是决定细胞命运的因素 通过改变染色质景观来决定程序。用于装饰的化学修饰的沉积 染色质需要代谢途径的中间产物,而去除这些标记的几种酶使用 作为其酶反应一部分的代谢物。因此,代谢物水平的波动有能力 塑造染色质以影响细胞命运特定基因的表达,但驱动染色质的代谢变化 在早期发育过程中调节代谢控制细胞命运的重组和酶仍然存在 很大程度上是未知的。我们之前已经确定了控制小鼠胚胎自我更新的特定代谢物 干细胞(ESCs)。当胚胎干细胞退出自我更新的多能性状态时,新陈代谢是否发生改变,以及 这些代谢变化是多谱系分化所必需的,这仍然是一个悬而未决的问题。 这项研究计划的目标是描述退出时发生的新陈代谢重新连接 天真的多能性,并确定这种重新连接控制小鼠胚胎干细胞的机制 差异化。我们的初步数据表明,退出天真的多能性伴随着增长 在柠檬酸的线粒体输出中。在目标1中,我们将使用遗传和药理学方法来针对 线粒体柠檬酸转运体SLC25A1或下游柠檬酸分解酶ATP-柠檬酸裂解酶 验证线粒体来源的柠檬酸盐是早期分化所必需的假设。我们会调查的 这种代谢变化是否通过柠檬酸衍生的组蛋白乙酰化沉积来调节细胞命运 马克。初步数据也显示了细胞氧化还原状态的变化,其特点是胞浆增加 分化早期NAD+/NADH比值。在目标2中,我们将确定这种代谢变化是否需要 通过使用药理学或遗传工具调节NAD+/NADH比率,退出天真的多能性。进一步 实验将确定细胞氧化还原状态信号传递给染色质景观的机制 决定细胞的命运。这些研究将揭示退出天真多能的代谢控制机制。 并将提供关键的洞察力,了解新陈代谢调节如何促进细胞身份的变化 胚胎发育。本提案中概述的工作和培训计划将在实验室完成 在纪念斯隆·凯特琳癌症中心与克里斯蒂安·海林博士的共同建议下,莉迪亚·芬利博士和 将理想地为申请人进一步的临床培训和作为一名独立的内科科学家的职业生涯做准备。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Tonnu Jackson其他文献

Benjamin Tonnu Jackson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Tonnu Jackson', 18)}}的其他基金

Metabolic control of exit from naïve pluripotency
退出幼稚多能性的代谢控制
  • 批准号:
    10625259
  • 财政年份:
    2022
  • 资助金额:
    $ 5.1万
  • 项目类别:

相似海外基金

Development of palladium-catalyzed novel organic transformations of silylated allyl acetates
钯催化的硅烷化乙酸烯丙酯新型有机转化的开发
  • 批准号:
    18K05101
  • 财政年份:
    2018
  • 资助金额:
    $ 5.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Biosynthesis of Methylketones and 2-Alkany l Acetates
甲基酮和 2-烷酰基乙酸酯的生物合成
  • 批准号:
    9118188
  • 财政年份:
    1992
  • 资助金额:
    $ 5.1万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了