Neural Mechanisms Supporting Implicit and Explicit Sensorimotor Learning
支持内隐和外显感觉运动学习的神经机制
基本信息
- 批准号:10387283
- 负责人:
- 金额:$ 4.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressBasal GangliaBasic ScienceBehaviorBehavior ControlBehavioralBrainCerebellumClinicalClosure by clampCompetenceComplementComputer ModelsConceptionsCuesDelawareDissociationDoctor of PhilosophyEnvironmentEvaluationExhibitsFacultyFatigueFeedbackFoundationsFutureGoalsGrainHumanImpairmentIndividualInjuryInstitutionInterventionLearningLinkLiteratureMemoryMentorsMentorshipMethodsMindModelingMotorMovementMuscle FatigueNational Research Service AwardsNeurologistNeuropsychologyParkinson DiseaseParticipantPatientsPatternPhysiologicalPlayPositioning AttributePostdoctoral FellowProcessRehabilitation therapyReportingResearchRetrievalRewardsRodent ModelRoleSavingsSignal TransductionSolidSpinocerebellar AtaxiasStrategic PlanningStructureSupervisionSupport SystemSystemTestingTrainingVolitionWalkingWorkWritinganalytical toolbasebehavioral studybrain machine interfacecognitive neurosciencecognitive rehabilitationdesignexperimental studyflexibilityimprovedinsightmotor controlmotor learningnervous system disorderneuroimagingneuromechanismnonhuman primatenovelnovel strategiesoperationpedagogyphysical therapistpower analysisprofessorrecruitrelating to nervous systemreward processingsensorimotor systemskillssuccesstherapy design
项目摘要
TITLE of PROJECT
Neural Mechanisms Supporting Implicit and Explicit Sensorimotor Learning
PROJECT SUMMARY
Successful goal-directed actions require a flexible motor control system, one that can quickly respond to changes
in the body (e.g., muscle fatigue) and in the environment (e.g., a windy day). Such flexibility depends on the
operation of multiple learning processes. Implicit learning processes (i.e., implicit adaptation) keep the
sensorimotor system exquisitely calibrated in an automatic manner, whereas explicit learning processes can
facilitate rapid adjustments in a strategic, yet effortful manner. While the cerebellum and basal ganglia are
prominently featured in the motor learning literature, their contribution to sensorimotor adaptation remains
unclear, in part because past studies have employed tasks that conflate implicit and explicit learning processes.
To disentangle the specific contributions of the cerebellum and basal ganglia to sensorimotor adaptation, I will
use a set of behavioral tasks developed in my mentor’s lab that are designed to isolate the contribution of different
learning processes. The results from this work have revised our current computational understanding of
sensorimotor adaptation and have set the stage for taking a new look at the subcortical systems involved in this
form of learning. In the proposed studies, we will test patients with spinocerebellar ataxia (SCA) and Parkinson’s
disease (PD) on these tasks. In terms of basic research, the results will be important in advancing our
understanding of how distributed neural systems support motor learning. In terms of translational benefit, the
insights from this work will aid physical therapists to better tailor interventions that tap into intact learning
mechanisms or enhance impaired ones.
This NRSA F31 training plan encompasses two specific aims (three experiments) that will be conducted at UC
Berkeley under the supervision of my sponsor, Prof. Richard Ivry. As a PI for 30 years, Prof. Ivry has trained 24
Ph.D. trainees and 21 post-doc fellows, many of whom hold faculty positions at research institutions. Under the
supervision of Prof. Ivry, this proposal outlines a comprehensive training plan, centered on gaining fluency in
computational modeling of behavior, methods in neuropsychology, writing and grantsmanship, presenting and
disseminating research, and clinical pedagogy and mentorship. I will benefit from frequent interactions with Prof.
Hyosub Kim, a former post-doc with Prof. Ivry who is now an Assistant Professor at the Univ. of Delaware. Prof.
Kim provides added expertise in computational modeling and mentorship as a trained physical therapist. I will
also benefit from mentorship provided by Prof. Robert Knight, a Professor and neurologist at UC Berkeley, who
can provide additional training in patient evaluation and general training drawing from many years of stellar
neuropsychological research with many patient groups and trainees. In summary, this training plan will build a
solid foundation for my future role as a PI, working at the intersection of cognitive neuroscience and rehabilitation.
项目名称
支持内隐和外显感觉运动学习的神经机制
项目摘要
成功的目标导向行动需要一个灵活的运动控制系统,一个可以快速响应变化的系统
在体内(例如,肌肉疲劳)和在环境中(例如,有风的日子)。这种灵活性取决于
多个学习过程的操作。内隐学习过程(implicit learning processes)隐式适应)保持
感觉运动系统以自动方式精确校准,而外显学习过程可以
以战略性但有效的方式促进快速调整。而小脑和基底神经节
在运动学习文献中,它们的突出特点是对感觉运动适应的贡献仍然存在。
不清楚,部分原因是过去的研究采用了将内隐和外显学习过程混为一谈的任务。
为了解开小脑和基底神经节对感觉运动适应的特殊贡献,我将
我使用了一组在我导师的实验室里开发的行为任务,这些任务旨在隔离不同行为的贡献。
学习过程。这项工作的结果已经修订了我们目前的计算理解,
感觉运动适应,并为重新审视参与这一过程的皮层下系统奠定了基础。
学习的形式。在拟议的研究中,我们将测试脊髓小脑性共济失调(SCA)和帕金森氏症患者
疾病(PD)在这些任务。在基础研究方面,这些结果将对推进我们的
了解分布式神经系统如何支持运动学习。在翻译效益方面,
这项工作的见解将有助于物理治疗师更好地调整干预措施,利用完整的学习
机制或增强受损的机制。
这个NRSA F31培训计划包括两个具体目标(三个实验),将在加州大学进行
伯克利分校在我的赞助商理查德·伊夫里教授的监督下。作为一名PI 30年来,Ivry教授已经培训了24名
博士研究生和21名博士后研究员,其中许多人在研究机构担任教职。下
在Ivry教授的监督下,该建议概述了一个全面的培训计划,以获得流利的英语为中心,
行为的计算建模,神经心理学方法,写作和语法,演示和
传播研究、临床教学法和指导。我将受益于与教授的频繁互动。
Hyosub Kim,Ivry教授的前博士后,现在是特拉华州大学的助理教授。教授
Kim作为一名训练有素的物理治疗师提供了计算建模和指导方面的额外专业知识。我会
我也受益于加州大学伯克利分校教授和神经学家罗伯特·奈特教授提供的指导,
可以提供额外的培训,在病人的评估和一般培训借鉴多年的恒星
神经心理学研究与许多患者群体和学员。总之,本培训计划将建立一个
为我未来作为一名PI的角色奠定了坚实的基础,在认知神经科学和康复的交叉点工作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Tsay其他文献
Jonathan Tsay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Tsay', 18)}}的其他基金
Neural Mechanisms Supporting Implicit and Explicit Sensorimotor Learning
支持内隐和外显感觉运动学习的神经机制
- 批准号:
10598457 - 财政年份:2022
- 资助金额:
$ 4.29万 - 项目类别:
相似海外基金
Mechanisms of Motivation: The Role of Cortical-Basal Ganglia-Dopamine Circuits in Reward Pursuit and Apathy
动机机制:皮质-基底神经节-多巴胺回路在奖励追求和冷漠中的作用
- 批准号:
MR/X022080/1 - 财政年份:2024
- 资助金额:
$ 4.29万 - 项目类别:
Research Grant
Elucidation of the onset mechanism of dysphagia in basal ganglia disease and development of new treatment methods
阐明基底神经节疾病吞咽困难的发病机制并开发新的治疗方法
- 批准号:
23K09284 - 财政年份:2023
- 资助金额:
$ 4.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Opponent control of action selection in the cortico-basal-ganglia-colliculus loop
皮质-基底节-丘环中动作选择的对手控制
- 批准号:
10633574 - 财政年份:2023
- 资助金额:
$ 4.29万 - 项目类别:
Characterizing GABAergic transmission at the cellular and synaptic levels in the developing and mature basal ganglia of the Huntington's Disease brain
描述亨廷顿病大脑发育和成熟基底神经节细胞和突触水平上的 GABA 能传递
- 批准号:
478477 - 财政年份:2023
- 资助金额:
$ 4.29万 - 项目类别:
Operating Grants
CRCNS: Decision dynamics in cortico-basal ganglia-thalamic networks
CRCNS:皮质-基底节-丘脑网络的决策动态
- 批准号:
10830650 - 财政年份:2023
- 资助金额:
$ 4.29万 - 项目类别:
Basal ganglia circuit mechanisms for threat coping
应对威胁的基底神经节回路机制
- 批准号:
10727893 - 财政年份:2023
- 资助金额:
$ 4.29万 - 项目类别:
The thalamic link between cerebellum and basal ganglia: A new approach to the treatment of dystonia
小脑和基底神经节之间的丘脑联系:治疗肌张力障碍的新方法
- 批准号:
489739 - 财政年份:2023
- 资助金额:
$ 4.29万 - 项目类别:
Operating Grants
Dissecting functional subgroups and closed-loop circuits between the pedunculopontine nucleus and the basal ganglia
解剖桥脚核和基底神经节之间的功能亚组和闭环回路
- 批准号:
10677467 - 财政年份:2023
- 资助金额:
$ 4.29万 - 项目类别:
Cortical basal ganglia network dynamics during human gait control
人类步态控制过程中的皮质基底神经节网络动力学
- 批准号:
10567272 - 财政年份:2023
- 资助金额:
$ 4.29万 - 项目类别:
Circuit-Inspired Strategies to Restore Basal Ganglia Function in Mouse Models of Parkinson’s Disease
恢复帕金森病小鼠模型基底神经节功能的受电路启发的策略
- 批准号:
10665167 - 财政年份:2023
- 资助金额:
$ 4.29万 - 项目类别: