Combinatorial and computational design of bnAb mRNA vaccines for HIV
HIV bnAb mRNA 疫苗的组合和计算设计
基本信息
- 批准号:10386924
- 负责人:
- 金额:$ 79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-07 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdjuvantAffinityAnimal ModelAntibodiesAntigen PresentationAntigen TargetingAntigen-Presenting CellsAntigensB-LymphocytesBeliefBiomedical EngineeringBiomimeticsBolus InfusionCD8-Positive T-LymphocytesCD8B1 geneCellsChemicalsClinicClinical TrialsClonal ExpansionCollaborationsComplexComputer ModelsCytokine SignalingDeveloping CountriesDevelopmentDoseEngineeringEpitopesEvaluationFormulationFutureGenerationsGenetic VariationHIVHIV AntigensHIV vaccineHIV-1HLA-A geneHalf-LifeHelper-Inducer T-LymphocyteHumanImmuneImmune responseImmune systemImmunityImmunizationImmunoglobulin GImmunoglobulin MImmunologic TestsImmunologyIndividualInfectionInflammationKineticsKnock-in MouseLaboratoriesLipidsMachine LearningMembrane ProteinsMessenger RNAMethodsModelingModificationMusMutationPathway interactionsPatternProcessProductionPropertyProtocols documentationRNA vaccinationRNA vaccineResearch PersonnelSchemeSignal TransductionStructureStructure of germinal center of lymph nodeSystemT cell responseT-LymphocyteTailTechniquesTestingTherapeuticTimeToxic effectTransgenic MiceTranslatingTranslationsVaccinationVaccinesVariantViraladoptive B cell transfercell behaviorclinical developmentclinical translationcombinatorialcombinatorial chemistrycross reactivitydesignefficacy validationenv Gene Productshumanized mouseimmune activationimmunogenicityimprovedin vivolipid nanoparticlelymph nodesmRNA deliverymodels and simulationmolecular dynamicsmouse modelnanoformulationnanoparticle deliverynanotherapeuticnanovaccineneutralizing antibodynext generationnovelpandemic diseasepathogenresponsetargeted deliveryvaccination protocolvaccine candidatevaccine developmentvaccine efficacyvaccine evaluation
项目摘要
Many HIV vaccine candidates have failed clinical trials, as they were unable to elicit a potent and durable response to
HIV viral challenge. Broadly neutralizing antibodies (bnAbs) have been identified in a number of HIV+ individuals with
well-controlled viral levels, and these bnAbs target epitopes that contain residues that are relatively conserved across viral
strains. It is thought bnAbs may have efficacy against various strains of HIV pathogen. It is therefore widely believed that
systems which induce a potent immune response that includes the generation of broadly neutralising antibodies (bnAbs) in
humans could be effective HIV vaccines, and help to mitigate the wide genetic diversity in envelope proteins and
relatively high mutation rate of HIV.
However, developing a vaccine which can elicit the production of these bnAbs in vivo has proven to be extremely
challenging. This is likely due to the complex affinity maturation process that is required to produce bnAbs. Immunization
protocols typically administer a single dose of antigen (prime dose), which is sometimes followed by a “boost” dose
delivered several weeks later. In a traditional bolus immunization, the half-life of the antigen present in lymph nodes is
generally shorter than the time scale over which germinal centres start producing higher affinity IgG antibodies relative to
the initial IgM response (~18 hrs). In contrast, natural infections expose the immune system to escalating antigen and
inflammation over days to weeks, resulting in the formation of a germinal centre with dynamic antigen presentation. This
germinal centre niche also supports activation of antigen presenting cells, T follicular helper cells, and appropriate
cytokine signalling to generate bnAbs. It is likely that to develop effective bnAbs, sophisticated vaccination techniques
which can more closely mimic natural infections and natural bnAb formation may be required.
We believe that to develop a successful HIV vaccine, researchers must aim to engineer more sophisticated and biomimetic
vaccines. Bioengineered vaccines should therefore consider three key parameters in parallel; 1) delivery of an
appropriately selected antigen, with 2) favourable kinetics of antigen expression, and 3) control of the immune response in
the germinal centre. We believe lymph node targeted delivery of computationally designed mRNA antigens inside
immunostimulatory lipid nanoparticles (mRNA LNPs) administered with computationally optimized immunization
protocols will address these three aspects in a unique way. Additionally,Translate Bio will provide expertise in
manufacturing considerations for mRNA therapeutics. As modifications to mRNA structure may impact the mRNA
antigen translation, stability, and immunogenicity, the input of our translational partner (Translate Bio) will allow us to
develop vaccines with a potential avenue for commercial development. This R61/R33 proposal combines our expertise in
computational antigen design, HIV immunology, combinatorial chemistry, and the commercialisation of mRNA
therapeutics to develop a new class of HIV mRNA vaccine candidates.
许多HIV候选疫苗的临床试验都失败了,因为它们不能引起对HIV的有效和持久的反应。
HIV病毒挑战。广泛中和抗体(bnAbs)已在许多HIV+个体中鉴定,
良好控制的病毒水平,这些bnAb靶向含有在病毒中相对保守的残基的表位,
菌株据认为bnAbs可能对各种HIV病原体菌株具有效力。因此,人们普遍认为,
诱导强效免疫应答的系统,包括在体内产生广泛中和抗体(bnAb),
人类可能是有效的HIV疫苗,并有助于减轻包膜蛋白的广泛遗传多样性,
艾滋病病毒的变异率相对较高。
然而,已经证明开发可以在体内引发这些bnAb的产生的疫苗是极其困难的。
挑战性这可能是由于产生bnAb所需的复杂的亲和力成熟过程。免疫
方案典型地施用单剂量的抗原(初免剂量),有时随后是“加强”剂量
几周后交付。在传统的推注免疫中,存在于淋巴结中的抗原的半衰期为
通常短于相对于免疫调节中心开始产生更高亲和力IgG抗体的时间尺度。
初始IgM应答(约18小时)。相比之下,自然感染使免疫系统暴露于不断升级的抗原,
炎症持续数天至数周,导致形成具有动态抗原呈递的生发中心。这
生发中心龛还支持抗原呈递细胞、T滤泡辅助细胞和适当的
细胞因子信号传导以产生bnAb。为了开发有效的bnAb,复杂的疫苗接种技术
其可以更接近地模拟天然感染,并且可能需要天然bnAb形成。
我们认为,要开发成功的艾滋病毒疫苗,研究人员必须致力于设计更复杂和仿生的疫苗,
疫苗。因此,生物工程疫苗应同时考虑三个关键参数:1)
适当选择的抗原,具有2)抗原表达的有利动力学,和3)免疫应答的控制,
老人中心我们相信淋巴结靶向递送计算设计的mRNA抗原,
与计算优化的免疫一起施用的免疫刺激性脂质纳米颗粒(mRNA LNP)
议定书将以独特的方式处理这三个方面的问题。此外,Translate Bio还将提供以下方面的专业知识:
mRNA治疗剂的制造考虑。由于mRNA结构的改变可能会影响mRNA的表达,
抗原翻译,稳定性和免疫原性,我们的翻译合作伙伴(Translate Bio)的输入将使我们能够
开发具有商业开发潜力的疫苗。该R61/R33提案结合了我们在以下方面的专业知识:
计算抗原设计、HIV免疫学、组合化学和mRNA的商业化
开发一种新的HIV mRNA候选疫苗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DANIEL G ANDERSON其他文献
DANIEL G ANDERSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DANIEL G ANDERSON', 18)}}的其他基金
Nonviral delivery techniques for in vivo prime editing
用于体内引物编辑的非病毒传递技术
- 批准号:
10548169 - 财政年份:2022
- 资助金额:
$ 79万 - 项目类别:
Nonviral delivery techniques for in vivo prime editing
用于体内引物编辑的非病毒传递技术
- 批准号:
10344605 - 财政年份:2022
- 资助金额:
$ 79万 - 项目类别:
SMART BIOELECTRONIC IMPLANTS FOR CONTROLLED DELIVERY OF THERAPEUTIC PROTEINS IN VIVO AND ITS APPLICATION IN LONG-TERM TREATMENT OF HEMOPHILIA A
用于体内治疗性蛋白质控制输送的智能生物电子植入物及其在血友病 A 长期治疗中的应用
- 批准号:
10446179 - 财政年份:2022
- 资助金额:
$ 79万 - 项目类别:
SMART BIOELECTRONIC IMPLANTS FOR CONTROLLED DELIVERY OF THERAPEUTIC PROTEINS IN VIVO AND ITS APPLICATION IN LONG-TERM TREATMENT OF HEMOPHILIA A
用于体内治疗性蛋白质控制输送的智能生物电子植入物及其在血友病 A 长期治疗中的应用
- 批准号:
10615840 - 财政年份:2022
- 资助金额:
$ 79万 - 项目类别:
Combinatorial and computational design of bnAb mRNA vaccines for HIV
HIV bnAb mRNA 疫苗的组合和计算设计
- 批准号:
10592273 - 财政年份:2021
- 资助金额:
$ 79万 - 项目类别:
Develop combinatorial non-viral and viral CRISPR delivery for lung diseases
开发针对肺部疾病的组合非病毒和病毒 CRISPR 递送
- 批准号:
10274832 - 财政年份:2018
- 资助金额:
$ 79万 - 项目类别:
Interfering with the macrophage life cycle of atherosclerosis
干扰动脉粥样硬化的巨噬细胞生命周期
- 批准号:
9412185 - 财政年份:2017
- 资助金额:
$ 79万 - 项目类别:
High throughput microfluidic intracellular delivery platform
高通量微流控细胞内递送平台
- 批准号:
8706186 - 财政年份:2013
- 资助金额:
$ 79万 - 项目类别:
High throughput microfluidic intracellular delivery platform
高通量微流控细胞内递送平台
- 批准号:
8504309 - 财政年份:2013
- 资助金额:
$ 79万 - 项目类别:
High throughput microfluidic intracellular delivery platform
高通量微流控细胞内递送平台
- 批准号:
9061704 - 财政年份:2013
- 资助金额:
$ 79万 - 项目类别:
相似海外基金
Metachronous synergistic effects of preoperative viral therapy and postoperative adjuvant immunotherapy via long-term antitumor immunity
术前病毒治疗和术后辅助免疫治疗通过长期抗肿瘤免疫产生异时协同效应
- 批准号:
23K08213 - 财政年份:2023
- 资助金额:
$ 79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving the therapeutic immunity of cancer vaccine with multi-adjuvant polymeric nanoparticles
多佐剂聚合物纳米粒子提高癌症疫苗的治疗免疫力
- 批准号:
2881726 - 财政年份:2023
- 资助金额:
$ 79万 - 项目类别:
Studentship
Countering sympathetic vasoconstriction during skeletal muscle exercise as an adjuvant therapy for DMD
骨骼肌运动期间对抗交感血管收缩作为 DMD 的辅助治疗
- 批准号:
10735090 - 财政年份:2023
- 资助金额:
$ 79万 - 项目类别:
Evaluation of the Sensitivity to Endocrine Therapy (SET ER/PR) Assay to predict benefit from extended duration of adjuvant endocrine therapy in the NSABP B-42 trial
NSABP B-42 试验中内分泌治疗敏感性 (SET ER/PR) 测定的评估,用于预测延长辅助内分泌治疗持续时间的益处
- 批准号:
10722146 - 财政年份:2023
- 资助金额:
$ 79万 - 项目类别:
AUGMENTING THE QUALITY AND DURATION OF THE IMMUNE RESPONSE WITH A NOVEL TLR2 AGONIST-ALUMINUM COMBINATION ADJUVANT
使用新型 TLR2 激动剂-铝组合佐剂增强免疫反应的质量和持续时间
- 批准号:
10933287 - 财政年份:2023
- 资助金额:
$ 79万 - 项目类别:
DEVELOPMENT OF SAS A SYNTHETIC AS01-LIKE ADJUVANT SYSTEM FOR INFLUENZA VACCINES
流感疫苗类 AS01 合成佐剂系统 SAS 的开发
- 批准号:
10935776 - 财政年份:2023
- 资助金额:
$ 79万 - 项目类别:
DEVELOPMENT OF SMALL-MOLECULE DUAL ADJUVANT SYSTEM FOR INFLUENZA VIRUS VACCINE
流感病毒疫苗小分子双佐剂体系的研制
- 批准号:
10935796 - 财政年份:2023
- 资助金额:
$ 79万 - 项目类别:
A GLYCOLIPID ADJUVANT 7DW8-5 FOR MALARIA VACCINES
用于疟疾疫苗的糖脂佐剂 7DW8-5
- 批准号:
10935775 - 财政年份:2023
- 资助金额:
$ 79万 - 项目类别:
Adjuvant strategies for universal and multiseasonal influenza vaccine candidates in the context of pre-existing immunity
在已有免疫力的情况下通用和多季节流感候选疫苗的辅助策略
- 批准号:
10649041 - 财政年份:2023
- 资助金额:
$ 79万 - 项目类别:
Adjuvant Photodynamic Therapy to Reduce Bacterial Bioburden in High-Energy Contaminated Open Fractures
辅助光动力疗法可减少高能污染开放性骨折中的细菌生物负载
- 批准号:
10735964 - 财政年份:2023
- 资助金额:
$ 79万 - 项目类别:














{{item.name}}会员




