An eHealth intervention to increase depression treatment initiation and adherence among Veterans referred for mental health services
电子健康干预措施可提高转介接受心理健康服务的退伍军人抑郁症治疗的开始率和依从性
基本信息
- 批准号:10388092
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdherenceAffectAftercareAwarenessBig DataBig Data MethodsCaringCharacteristicsClinicalComputerized Medical RecordDataDepressed moodDepression and SuicideDevelopmentDiseaseDropsDrug abuseEconomic BurdenEffectiveness of InterventionsElectronic Health RecordEvidence based treatmentFeedbackFosteringFoundationsFutureGoalsGoldGuidelinesHealthHealth ServicesHealth Services AccessibilityHealth Services ResearchHealthcareImpairmentImprove AccessInterventionKnowledgeLeadLinkMaintenanceMapsMeasurementMedicalMedical EconomicsMental DepressionMental HealthMental Health ServicesMental disordersMentorshipMethodologyMethodsMilitary PersonnelModelingMonitorOutcomePatient SelectionPatient riskPatientsPoliciesPost-Traumatic Stress DisordersProcessProviderResearchResearch PersonnelResearch PriorityRetrospective cohortRiskRisk FactorsRoleSelf EfficacySuicideSupport SystemSymptomsTechnologyTestingTimeTrainingTranslatingTreatment outcomeVeteransWorkanalytical toolbasebehavioral healthburden of illnesscare outcomesdata toolsdepressive symptomsdesigndisabilityeHealtheffectiveness researchefficacy evaluationexperienceformative assessmenthealth care service utilizationhealth knowledgehigh riskimprovedinnovationintervention programmilitary veteranmood symptomoperationpatient orientedpredictive modelingprofiles in patientsprogramsresponseservice interventionskillsstructured datasuicide mortalitytherapy designtherapy developmenttooltool developmenttreatment guidelinestreatment optimizationtreatment responseuptake
项目摘要
Background: Depression is the most prevalent mental health disorder in VHA and is strongly
associated with disability and suicide mortality, especially when untreated. Understanding the
profiles of patients that disengage from care will help develop support systems to improve care
utilization and outcomes. According to Levesque’s framework, relevant patient characteristics that
lead to care access map onto a process that incorporates identifying health care needs and desire
for care, healthcare seeking, reaching, and utilization, all leading to health care outcomes. Using this
framework, the proposed CDA takes a two-prong approach in response to underutilization of care
among those with depression by: developing risk predictive models through analytics methodology
and leveraging the role of mood and symptom self-monitoring as key components in depression
management. Significance/Impact: The knowledge developed through this CDA has long term
implications for OEF/OIF Veterans who are at highest risk for depression and suicide. Depression
has a significant impact on Veterans, providers, and the VA. It is a disorder that is linked to
substantial medical and economic burden in the VA. Depression is a risk factor for the development
and maintenance of medical and psychiatric conditions (i.e., PTSD, TBI). Despite persistent efforts
to increase care for depression, treatment guidelines are exclusively focused on those engaging in
care. Pre-treatment interventions have the potential to increase mental health care utilization and
reduce depression related burden on patients and the VA. Such interventions can minimize provider
burden by reducing no shows and by increasing adherence. Innovation: Research shows that the
VA has the potential to foster the development of tools to enhance mental health care for Veterans.
To fill gaps in the use of analytics and technology in enhancing care for mental health concerns, the
proposed work is innovative in two ways: 1) we propose the use of big data and analytics tools to
identify patient profiles associated with mental health treatment engagement and increased risk for
drop out of care; 2) develop a technology driven intervention to increase self-efficacy and active
engagement in mental health care. Specific Aims: RA1: Identify risk profiles (scores) associated
with depression treatment use. Test prediction models using VHA electronic health records (EHR).
Risk scores computed in Aim 1 will be used in selection of patients at risk and eligible for the
proposed intervention.TA1: Gain proficiency in methods and analysis of EHR/big data. RA2: Design
an eHealth intervention using technology driven self-monitoring. TA2: Develop skills and knowledge
about intervention development. RA3: Formatively evaluate and pilot the eHealth intervention. TA3:
Gain proficiency in formative evaluation. Methodology: RA1 will use a retrospective cohort design.
Leveraging the strengths of EHR data and analytics tools, we will investigate risk models to identify
patient profiles associated with treatment initiation and adherence. Predictors will be extracted from
structured data. RA2 is a development aim. We propose to design and formatively develop an
eHealth intervention primarily using technology driven self-monitoring of depressed mood and
symptoms. RA3 is a formative evaluation and pilot aim focused on the use of the intervention among
OEF/OIF Veterans with probable depression (N= 15). Next Steps/Implementation: This CDA will
help to establish a foundation for future efficacy/effectiveness research on interventions to increase
treatment utilization among Veterans with depression. Results will be used to inform the submission
of a RCT IIR in year 3 of the CDA to evaluate the efficacy/effectiveness of this intervention. Tools
developed in this CDA will contribute to VA innovation goals.
背景:抑郁症是VHA中最常见的心理健康障碍,
与残疾和自杀死亡率相关,特别是在未经治疗的情况下。了解
脱离护理的患者概况将有助于发展支持系统,以改善护理
利用和成果。根据Levesque的框架,
导致将护理访问映射到结合识别健康护理需要和期望过程
对于护理,医疗保健寻求,到达和利用,所有这些都导致医疗保健结果。使用此
在这个框架下,拟议的综合发展援助采取双管齐下的方法,以应对护理利用不足的问题
通过分析方法开发风险预测模型
并利用情绪和症状自我监控作为抑郁症的关键组成部分
管理意义/影响:通过本CDA开发的知识具有长期意义
OEF/OIF退伍军人谁是抑郁症和自杀的最高风险的影响。抑郁
对退伍军人,供应商和VA有重大影响。这种疾病与
医疗和经济负担沉重。抑郁症是发展的危险因素
以及维持医疗和精神状况(即,PTSD、TBI)。尽管作出了不懈努力,
为了增加对抑郁症的护理,治疗指南专门针对那些参与
在乎治疗前干预有可能提高精神卫生保健的利用率,
减轻患者和VA的抑郁相关负担。这种干预措施可以最大限度地减少供应商
通过减少不显示和增加遵守的负担。创新:研究表明,
VA有潜力促进工具的开发,以加强退伍军人的心理健康护理。
为了填补分析和技术在加强心理健康问题护理方面的空白,
拟议的工作在两个方面具有创新性:1)我们建议使用大数据和分析工具,
确定与心理健康治疗参与相关的患者概况,
退出护理; 2)开发技术驱动的干预措施,以提高自我效能和积极性
参与精神卫生保健。具体目标:RA 1:确定相关风险特征(评分)
抑郁症治疗的使用。使用VHA电子健康记录(EHR)测试预测模型。
在目标1中计算的风险评分将用于选择有风险且有资格参加
TA 1:熟练掌握EHR/大数据的方法和分析。RA 2:设计
使用技术驱动的自我监测的电子健康干预。TA 2:培养技能和知识
关于干预发展。RA 3:正式评估和试点电子卫生干预措施。TA3:
熟练掌握形成性评价。方法学:RA 1将采用回顾性队列设计。
利用EHR数据和分析工具的优势,我们将研究风险模型,
与治疗开始和依从性相关的患者概况。预测因子将从
结构化数据RA 2是一个发展目标。我们建议设计和形成发展一个
电子健康干预主要使用技术驱动的抑郁情绪自我监测,
症状RA 3是一项形成性评价和试点目标,重点是在以下人群中使用干预措施:
OEF/OIF退伍军人可能患有抑郁症(N= 15)。后续步骤/实施:本CDA将
有助于为今后关于干预措施的功效/效果研究奠定基础,
抑郁症退伍军人的治疗利用率。结果将用于通知提交
在CDA的第3年进行RCT IIR,以评价该干预的疗效/有效性。工具
本CDA中开发的技术将有助于实现VA创新目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vanessa Panaite其他文献
Vanessa Panaite的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vanessa Panaite', 18)}}的其他基金
An eHealth intervention to increase depression treatment initiation and adherence among Veterans referred for mental health services
电子健康干预措施可提高转介接受心理健康服务的退伍军人抑郁症治疗的开始率和依从性
- 批准号:
10064813 - 财政年份:2021
- 资助金额:
-- - 项目类别:
相似海外基金
Improving Repositioning Adherence in Home Care: Supporting Pressure Injury Care and Prevention
提高家庭护理中的重新定位依从性:支持压力损伤护理和预防
- 批准号:
490105 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
An innovative, AI-driven prehabilitation platform that increases adherence, enhances post-treatment outcomes by at least 50%, and provides cost savings of 95%.
%20创新、%20AI驱动%20康复%20平台%20%20增加%20依从性、%20增强%20治疗后%20结果%20by%20at%20至少%2050%、%20和%20提供%20成本%20节省%20of%2095%
- 批准号:
10057526 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant for R&D
CO-LEADER: Intervention to Improve Patient-Provider Communication and Medication Adherence among Patients with Systemic Lupus Erythematosus
共同领导者:改善系统性红斑狼疮患者的医患沟通和药物依从性的干预措施
- 批准号:
10772887 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Nuestro Sueno: Cultural Adaptation of a Couples Intervention to Improve PAP Adherence and Sleep Health Among Latino Couples with Implications for Alzheimer’s Disease Risk
Nuestro Sueno:夫妻干预措施的文化适应,以改善拉丁裔夫妇的 PAP 依从性和睡眠健康,对阿尔茨海默病风险产生影响
- 批准号:
10766947 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Pharmacy-led Transitions of Care Intervention to Address System-Level Barriers and Improve Medication Adherence in Socioeconomically Disadvantaged Populations
药房主导的护理干预转型,以解决系统层面的障碍并提高社会经济弱势群体的药物依从性
- 批准号:
10594350 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Unintrusive Pediatric Logging Orthotic Adherence Device: UPLOAD
非侵入式儿科记录矫形器粘附装置:上传
- 批准号:
10821172 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Antiretroviral therapy adherence and exploratory proteomics in virally suppressed people with HIV and stroke
病毒抑制的艾滋病毒和中风患者的抗逆转录病毒治疗依从性和探索性蛋白质组学
- 批准号:
10748465 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Improving medication adherence and disease control for patients with multimorbidity: the role of price transparency tools
提高多病患者的药物依从性和疾病控制:价格透明度工具的作用
- 批准号:
10591441 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Development and implementation of peer-facilitated decision-making and referral support to increase uptake and adherence to HIV pre-exposure prophylaxis in African Caribbean and Black communities in Ontario
制定和实施同行协助决策和转介支持,以提高非洲加勒比地区和安大略省黑人社区对艾滋病毒暴露前预防的接受和依从性
- 批准号:
491109 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fellowship Programs














{{item.name}}会员




