Defining the mechanisms of kinetoplast DNA assembly by trypanosomal topoisomerase II for therapeutic target development
定义锥虫拓扑异构酶 II 的动质体 DNA 组装机制,用于治疗靶点开发
基本信息
- 批准号:10386849
- 负责人:
- 金额:$ 4.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:ATP phosphohydrolaseATPase DomainAdenylyl ImidodiphosphateAffectAfricanAfrican TrypanosomiasisAntibioticsAntineoplastic AgentsAntiparasitic AgentsBindingBiochemicalBiological AssayBiologyBiophysicsBlood CirculationCatenated DNACellsChagas DiseaseChemicalsChromosome SegregationChromosomesClinicalDNADNA BindingDNA LigationDNA biosynthesisDNA topoisomerase II alphaDataDependenceDevelopmentDimerizationDiseaseDrug TargetingEnsureEnvironmentEnzymesEukaryotaFDA approvedFluorescence Resonance Energy TransferFluoroquinolonesFutureGenetic TranscriptionGenomicsGoalsHealthHomology ModelingHydrolysisIn VitroInfectionInfectious AgentInterventionKinetoplast DNAKnowledgeLabelLeishmaniasisLibrariesMeasurementMeasuresMediatingMitochondriaMitochondrial DNAMolecularMolecular BiologyMolecular MachinesMolecular StructureMonitorNucleotidesOutcomeParasitesPersonsPharmaceutical PreparationsPlasmidsPopulationProcessPropertyProtein IsoformsPublic HealthRNA InterferenceRNA primersReactionRecombinantsRecyclingReduce health disparitiesRelaxationReportingResearchRunningSaccharomyces cerevisiaeSodium ChlorideSourceStructureSuperhelical DNATemperatureTestingTherapeuticTherapeutic InterventionTopoisomeraseTopoisomerase IITopoisomerase InhibitorsTopoisomerase-II InhibitorTrainingTrypanosomaTrypanosoma brucei bruceiTrypanosoma cruziWorkanalogbaseclinical applicationcofactordeviantdimerdivalent metalenzyme activitygel electrophoresishealth disparityhigh throughput screeningimprovedinhibitorinorganic phosphateinsightinterestmedical schoolsmindfulnessneglectneglected tropical diseasesnext generationnoveloverexpressionpathogenpreferencesmall moleculesmall molecule inhibitortherapeutic developmenttherapeutic target
项目摘要
Project Summary/Abstract
Type IIA topoisomerases (topo II) are ubiquitous molecular machines that manage DNA superhelical structure
and decatenate DNA entanglements to support critical processes such as transcription, DNA replication, and
chromosome segregation. Topo II relies on ATP to capture and pass one DNA segment through a reversible,
topo-II mediated, double-strand break in a second DNA segment. With numerous clinically proven antibiotics
and anti-cancer drugs targeting the essential, yet risky, activities of these enzymes, the ATP-dependence of the
topo II strand passage reaction is well-established; however, how topo IIs use ATP and local DNA interactions
to favor unidirectional strand passage activity (ensuring genomic knots are removed, not formed) is unknown. In
sharp contrast to other topo IIs, the mitochondrial-specific type IIA topoisomerase from trypanosomes
(TxTopoIImt) is reported to possess an unexpected ATP-independent strand passage activity. In addition,
TxTopoIImt appears to switch between canonical topo II activities (e.g., decatenating DNA) and the antithetical
activity of catenating DNA molecules. Switching of strand passage directionality is believed to be how TxTopoIImt
perpetuates networks of mitochondrial DNA, known as kinetoplast or kDNA, which comprise thousands of DNA
circles interlocked into a giant structure akin to medieval chain mail. The unique kDNA structure is a hallmark of
trypanosomatids, recondite parasites that cause three neglected tropical diseases: African sleeping sickness,
Chagas disease, and leishmaniasis. The goal of this project is to develop TxTopoIImt as a therapeutic target by
understanding and exploiting the fundamental mechanisms underlying the enzyme’s deviant activities.
Strategies outlined in Aim 1 will mechanistically define the strange activities of TxTopoIImt in vitro, which are
now possible due to a recent breakthrough in producing soluble TxTopoIImt purified from recombinant sources.
Cofactor requirements for TxTopoIImt will be assessed (with in vitro topoisomerase decatenation and supercoil
relaxation assays) and the molecular determinants of DNA strand passage directionality will be explored (using
singly-catenated DNA substrates of various compositional topologies). The objectives of Aim 2 are to
characterize the mechanisms by which small-molecule inhibitors of purified TxTopoIImt (identified with in vitro
screens of both clinically known topo II inhibitors and the Johns Hopkins FDA-Approved Drug Library) affect
enzymatic activities, and then validate the anti-parasitic therapeutic potential of these inhibitors with killing assays
of bloodstream-form African trypanosome cultures. Together, these aims have the potential to offer novel
mechanistic insights into general topo II function, establish a molecular understanding of parasitic trypanosomes’
peculiar biology, and support future research efforts to develop novel treatments for trypanosome infections. As
such, this project draws upon the collaborative academic environment found at Johns Hopkins School of
Medicine to provide basic biophysical training that is mindful of translational opportunities for clinical application.
项目总结/摘要
IIA型拓扑异构酶(topoII)是一种普遍存在的控制DNA超螺旋结构的分子机器
和十链DNA缠结,以支持关键过程,如转录,DNA复制,
染色体分离Topo II依赖于ATP捕获并通过一个可逆的DNA片段,
topo-II介导的第二DNA片段中的双链断裂。具有多种临床证明的抗生素
以及针对这些酶的基本但有风险的活性的抗癌药物,
topo II链通过反应是公认的;然而,topo II如何使用ATP和局部DNA相互作用
以有利于单向链通过活性(确保基因组结被去除,而不是形成)是未知的。在
与其他拓扑异构酶II形成鲜明对比的是,锥虫特异性IIA型拓扑异构酶
(TxTopoIImt)具有出乎意料的ATP非依赖性链通过活性。此外,本发明还提供了一种方法,
TxTopoIImt似乎在典型的拓扑II活动之间切换(例如,decatenating DNA)和对立的
链化DNA分子的活性。链通道方向性的转换被认为是TxTopolimt
使线粒体DNA网络永久化,称为动质体或kDNA,它包含数千个DNA
圆圈联锁成一个巨大的结构,类似于中世纪的锁子甲。独特的kDNA结构是
锥虫是一种隐蔽的寄生虫,可引起三种被忽视的热带疾病:非洲昏睡病,
恰加斯病和利什曼病。该项目的目标是通过以下方式将TxTopoIImt开发为治疗靶点:
理解和利用酶的异常活动的基本机制。
目标1中概述的策略将机械地定义TxTopoIImt在体外的奇怪活性,其为
由于最近在生产从重组来源纯化的可溶性TxTopoIImt方面的突破,
将评估TxTopoIImt的辅因子要求(体外拓扑异构酶脱链和超螺旋
松弛试验)和DNA链通过方向性的分子决定因素将被探索(使用
各种组成拓扑结构的单链DNA底物)。目标2的目标是
表征纯化的TxTopoIImt的小分子抑制剂(用体外鉴定)的机制,
临床已知的拓扑异构酶II抑制剂和约翰霍普金斯FDA批准的药物库的筛选)影响
酶活性,然后用杀伤试验验证这些抑制剂的抗寄生虫治疗潜力
非洲锥虫的血液流培养。总之,这些目标有可能提供新的
一般拓扑结构II功能的机制见解,建立寄生锥虫的分子理解
独特的生物学,并支持未来的研究工作,以开发新的治疗锥虫感染。作为
因此,该项目借鉴了约翰霍普金斯大学的协作学术环境。
医学提供基本的生物物理培训,注意临床应用的转化机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arman Alam Siddiqui其他文献
Arman Alam Siddiqui的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CRYSTAL STRUCTURE OF ADP COMPLEX OF ATPASE DOMAIN OF CHAPERONE HSC66
伴侣HSC66的ATP酶域ADP复合物的晶体结构
- 批准号:
6119556 - 财政年份:1999
- 资助金额:
$ 4.68万 - 项目类别:














{{item.name}}会员




