Fu - Proj 3
富 - 项目 3
基本信息
- 批准号:10212418
- 负责人:
- 金额:$ 32.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptive Cell TransfersAnimal ModelAntibodiesAttentionBiological MarkersBiologyBreastCancer BiologyCancer ModelCancer PatientCellsCenters of Research ExcellenceClinicalClinical DataClinical ResearchClinical TrialsClinical Trials DesignClinical assessmentsCollaborationsCombination immunotherapyCombined Modality TherapyComputer ModelsCouplesDataData AnalyticsDevelopmentDoseEngineeringEnvironmentEyeFrequenciesFutureGene ExpressionGenomicsGoalsGrowthHumanImmuneImmune checkpoint inhibitorImmunotherapyIn VitroIndividualInfrastructureLeadLongterm Follow-upLungMalignant NeoplasmsMalignant neoplasm of lungMathematicsMethodsMinorityModalityModelingMonitorMonoclonal AntibodiesNatureOncologyOrganismOutcomePatientsPharmaceutical PreparationsPre-Clinical ModelPublic HealthRelapseResearchResearch PersonnelResistanceScheduleSolidSource CodeStatistical ModelsT-Cell ActivationT-LymphocyteTechniquesTestingTherapeuticToxic effectTranslational ResearchTreatment EfficacyTreatment FailureTreatment outcomeTumor BurdenUnited StatesValidationWorkanimal databasebench to bedsidecancer cellcancer immunotherapeuticscancer immunotherapycancer therapyclinically relevantcombinatorialcomparative efficacycostcytokine release syndromedesigndosagedynamic systemefficacy evaluationexperimental studyflexibilityimmune resistanceimprovedin silicoindividual patientinsightinterestlaboratory experimentmathematical modelmelanomamelanoma biomarkersnovelnovel strategiesopen sourcepersonalized immunotherapypre-clinicalprecision medicineresistance mutationresponseside effectsimulationsingle cell sequencingtargeted treatmenttheoriestreatment responsetumortumor growthtumor progression
项目摘要
PROJECT SUMMARY
It is of fundamental importance to understand the key mechanisms that govern the progression of cancer and
elucidate the often-unknown factors that account for treatment failures. Although they fail to cure most patients
with common metastatic solid cancers (like breast and lung), immunotherapies have had a significant impact in
a minority of late-stage lung cancer and melanoma patients. While these potentially curative cancer therapies
are being rapidly developed and tested, a major barrier is the lack of quantitative models to describe and evaluate
their efficacy. This project proposes to explore clinically relevant math and in-silico models of cancer cell
dynamics for personalized immunotherapy. We will focus on two distinct, yet strongly interconnected,
approaches of cancer therapy: (1) adoptive-cell transfer, in which in-vitro engineered and personalized tumor-
infiltrating T-cells are transfused to suppress tumor growth; and (2) checkpoint inhibitors that boost anti-tumor
activities of effector immune cells. Very recently, a wealth of immune-related biomarker data has become
available—their close integration with mechanistic, mathematical models would unleash their explanatory and
predictive power in treatment response and outcome. Here, Project 3 will take advantage of these biomarker
data to infer and quantify key parameters that govern cancer-immune interactions. Specifically, Aim 1 will
develop a quantitative mathematical framework based on the dynamical systems approach to provide practical
guidance for clinical assessment of the efficacy of adoptive cell transfer approach. Aim 2 will optimize therapeutic
strategies for checkpoint inhibitors and their potential combinations, while Aim 3 will evaluate and identify
immune-related biomarkers for melanoma cancer by closely integrating computational modeling with single-cell
sequencing data from animal models and clinical trials. This design will use a theoretical framework to assess
and compare the efficacies of different combinations, as well as to provide guidance on the minimum efficacy
and optimal dosage schedule of checkpoint inhibitors required to achieve positive clinical outcomes. This
proposal will develop clinically relevant math and in-silico models that will facilitate the way novel cancer
immunotherapeutic strategies are conceived, tested, and understood. Owing to their innate flexibility, these in-
silico models also can be readily incorporated with the specific cancer profile on the cancer-cell level, and thus
enable informed treatment decisions and predict treatment outcomes in a personalized fashion. The ultimate
goal is to use these in-silico and mathematical models to interpret lab and clinical results and to guide design
principles of future lab experiments and clinical trials, all with an eye toward model-informed personalized
immunotherapy.
项目摘要
了解控制癌症进展的关键机制和
阐明造成治疗失败的原因常常不明显的因素。尽管他们无法治愈大多数患者
对于常见的转移性固体癌(如乳腺癌和肺),免疫疗法对
少数晚期肺癌和黑色素瘤患者。这些潜在的治愈性癌症疗法
正在快速开发和测试,一个主要的障碍是缺乏描述和评估的定量模型
他们的有效性。该项目的提案旨在探索癌细胞与临床相关的数学和silico模型
个性化免疫疗法的动力学。我们将专注于两个不同但又很强的相互联系,
癌症疗法的方法:(1)收养细胞转移,其中体外工程和个性化肿瘤 -
浸润T细胞被输血以抑制肿瘤的生长; (2)增强抗肿瘤的检查点抑制剂
效应免疫球的活性。最近,大量与免疫相关的生物标志物数据已成为
可用 - 他们与机械,数学模型的紧密整合不会牵引他们的删除和
治疗反应和结果的预测能力。在这里,项目3将利用这些生物标志物
数据以推断和量化控制癌症免疫相互作用的关键参数。具体来说,AIM 1将
基于动态系统方法开发定量的数学框架,以提供实用
自适应细胞转移方法效率的临床评估指南。 AIM 2将优化治疗
检查点抑制剂及其潜在组合的策略,而AIM 3将评估和识别
通过与单细胞紧密整合计算建模,用于黑色素瘤癌症的免疫相关生物标志物
从动物模型和临床试验中进行测序数据。该设计将使用理论框架来评估
并比较不同组合的效率,并提供有关最低效率的指导
以及获得阳性临床结果所需的检查点抑制剂的最佳剂量时间表。这
提案将开发临床上相关的数学和内部模型,以促进新型癌症的方式
对免疫疗法的策略进行了构思,测试和理解。由于它们的天生灵活性,这些
在癌症细胞水平上,硅模型也可以很容易地与特定的癌症概况合并,因此
实现知情的治疗决策并以个性化的方式预测治疗结果。最终
目标是使用这些内部和数学模型来解释实验室和临床结果并指导设计
未来实验室实验和临床试验的原则,所有这些都注视着模型的个性化
免疫疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Feng Fu其他文献
Feng Fu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
New insights into the functional diversity of the hepatic antiviral T cell response during hepacivirus infection in vivo
体内肝炎病毒感染期间肝脏抗病毒T细胞反应功能多样性的新见解
- 批准号:
10631150 - 财政年份:2022
- 资助金额:
$ 32.52万 - 项目类别:
Alterations of leukocyte integrin signaling leading to diabetes and autoimmunity
白细胞整合素信号的改变导致糖尿病和自身免疫
- 批准号:
10502136 - 财政年份:2022
- 资助金额:
$ 32.52万 - 项目类别:
New insights into the functional diversity of the hepatic antiviral T cell response during hepacivirus infection in vivo
体内肝炎病毒感染期间肝脏抗病毒T细胞反应功能多样性的新见解
- 批准号:
10500968 - 财政年份:2022
- 资助金额:
$ 32.52万 - 项目类别:
Cellular engineering to improve the efficacy and specificity of targeted immunotherapy
细胞工程提高靶向免疫疗法的功效和特异性
- 批准号:
10304452 - 财政年份:2021
- 资助金额:
$ 32.52万 - 项目类别: