Personalized Structural Biology: Enabling Exome Interpretation in Undiagnosed Diseases

个性化结构生物学:在未确诊疾病中实现外显子组解释

基本信息

  • 批准号:
    10211423
  • 负责人:
  • 金额:
    $ 35.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-05 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Our long-term goal is to establish personalized structural biology – a precision medicine approach for inter- preting clinical sequencing data by jointly modeling all mutations in a patient’s proteome in the context of protein 3D structures, known human genetic variation, and other relevant data. In this project, we will develop the com- putational tools needed to integrate the wealth of available genetic variation data with cutting edge algorithms for efficiently modeling mutations to human protein structures and accurately quantifying their specific functional effects. This will provide a rich characterization of healthy and diseased proteomes and the means to generate actionable hypotheses about the effects of variants of unknown significance in individual patients. To demon- strate the power and relevance of this approach, we will apply it to facilitate variant interpretation in individuals in the Undiagnosed Diseases Network (UDN). We will then collaborate to validate our predictions. Our central hypothesis is that achieving the full promise of precision medicine requires the interpretation of a patient’s genetic variants in their 3D structural contexts and the integration of structural and clinical infor- mation. Patient genome interpretation is a major roadblock to fully realizing the transformative potential of per- sonalized medicine in the clinic. Current approaches for characterizing protein-coding variants of unknown sig- nificance have several shortcomings that limit their practical utility. First, they are not personalized; most are trained en masse on databases of known mutations across thousands of individuals. Thus, they are subject to ascertainment bias and ignore the background of other variants present in the individual. Second, most fail to provide specific biologically interpretable and thus therapeutically actionable predictions of a mutation’s effects beyond “benign” or “pathogenic”. Third, they are not stable and similar methods often disagree. Fourth, most are unable to interpret multi-base insertions and deletions. As a result and most importantly, current methods often give insufficient guidance to clinicians and fail to personalize next steps of treatment. Computational methods for modeling the effects of mutations on protein structures are now sufficiently fast and accurate to provide a solution to these challenges. Building on our expertise in analyzing the effects of mutations and modeling protein structures, the following aims establish a computational framework for interpre- tation of exonic variants that is personalized, clinically relevant, accurate, and applicable to all mutation types.
项目摘要 我们的长期目标是建立个性化的结构生物学--一种用于跨学科的精准医学方法, 通过在蛋白质组的背景下联合建模患者蛋白质组中的所有突变来预处理临床测序数据 3D结构、已知的人类遗传变异和其他相关数据。在这个项目中,我们将开发COM- 将丰富的可用遗传变异数据与最先进的算法相结合所需的计算工具 用于有效地对人类蛋白质结构的突变进行建模,并准确地定量其特定的功能 方面的影响.这将为健康和患病蛋白质组提供丰富的表征,并提供生成 关于个体患者中未知意义的变异的影响的可行假设。变成恶魔- 为了说明这种方法的力量和相关性,我们将应用它来促进个体的变异解释 未诊断疾病网络(UDN)然后,我们将合作验证我们的预测。 我们的中心假设是,实现精准医疗的全部承诺需要解释 患者在其3D结构背景下的遗传变异以及结构和临床信息的整合, mation。患者基因组解释是充分实现每一个人的变革潜力的主要障碍。 超声医学在临床上的应用目前用于表征未知信号蛋白编码变体的方法 但是重要性具有几个限制其实际应用的缺点。首先,它们不是个性化的;大多数都是 在数千个个体的已知突变数据库上进行训练。因此,他们受到 确定偏差,忽略个体中存在的其他变体的背景。第二,大多数人没有 提供特定的生物学可解释的,从而对突变效应的治疗上可操作的预测 “良性”或“致病性”之外第三,它们不稳定,类似的方法往往不一致。第四,大多数是 无法解释多碱基插入和缺失。因此,最重要的是,目前的方法往往 对临床医生的指导不足,无法个性化下一步的治疗。 现在,用于模拟突变对蛋白质结构的影响的计算方法已经足够了。 快速、准确地为这些挑战提供解决方案。基于我们在分析影响方面的专业知识, 突变和建模蛋白质结构,以下目标建立一个计算框架, 外显子变异的定位是个性化的,临床相关的,准确的,适用于所有突变类型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Anthony Capra其他文献

John Anthony Capra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Anthony Capra', 18)}}的其他基金

Personalized Structural Biology: Enabling Exome Interpretation in Undiagnosed Diseases
个性化结构生物学:在未确诊疾病中实现外显子组解释
  • 批准号:
    10462539
  • 财政年份:
    2021
  • 资助金额:
    $ 35.45万
  • 项目类别:
Personalized Structural Biology: Enabling Exome Interpretation in Undiagnosed Diseases
个性化结构生物学:在未确诊疾病中实现外显子组解释
  • 批准号:
    10641002
  • 财政年份:
    2021
  • 资助金额:
    $ 35.45万
  • 项目类别:
The Evolution of Gene Regulation and Human Disease
基因调控的进化与人类疾病
  • 批准号:
    10460911
  • 财政年份:
    2018
  • 资助金额:
    $ 35.45万
  • 项目类别:
The Evolution of Gene Regulation and Human Disease
基因调控的进化与人类疾病
  • 批准号:
    9904747
  • 财政年份:
    2018
  • 资助金额:
    $ 35.45万
  • 项目类别:
The Evolution of Gene Regulation and Human Disease
基因调控的进化与人类疾病
  • 批准号:
    10321189
  • 财政年份:
    2018
  • 资助金额:
    $ 35.45万
  • 项目类别:
Modeling the Dynamics of Genome-Scale Data Across Trees
跨树基因组规模数据的动态建模
  • 批准号:
    9306885
  • 财政年份:
    2015
  • 资助金额:
    $ 35.45万
  • 项目类别:
Modeling the Dynamics of Genome-Scale Data Across Trees
跨树基因组规模数据的动态建模
  • 批准号:
    9117563
  • 财政年份:
    2015
  • 资助金额:
    $ 35.45万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 35.45万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 35.45万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 35.45万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 35.45万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 35.45万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 35.45万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 35.45万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 35.45万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 35.45万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.45万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了