A multidimensional approach to studying the impact of caregiving on health among dementia caregivers
研究护理对痴呆症护理人员健康影响的多维方法
基本信息
- 批准号:10210566
- 负责人:
- 金额:$ 44.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAlzheimer&aposs disease related dementiaAlzheimer&aposs disease riskBehaviorCardiovascular DiseasesCaregiversCaringChronicChronic DiseaseChronic stressClinicalClinical DataClinical TrialsDataDementia caregiversDepressive disorderDevelopmentDiabetes MellitusDiseaseDistressElectronic Health RecordFamily CaregiverFamily memberFunding MechanismsGoalsHealthHealth PromotionHealth StatusHealth behaviorHealthcare SystemsHeterogeneityIncidenceIndividualIntegrated Health Care SystemsInterventionMeasurementMental DepressionMethodsMonitorOutcomePatient CarePatient Self-ReportPatientsPatternPersonal SatisfactionPersonsPhysical FunctionPositioning AttributeQuality of lifeResearchRiskRisk FactorsRoleSocietiesSpouse CaregiverSpousesSubgroupSupervisionSurvey MethodologyUnited StatesVariantbasecaregivingdementia caredementia caregivingdesignexperiencefamily caregivingfrailtyhealth assessmenthealth care servicehealth care service utilizationimprovedinnovationinsightmultiple data sourcesnovel strategiespatient populationphysical conditioningpreventpreventive interventionprotective factorspsychosocialrecruitresponsesocial engagementtailored health care
项目摘要
Family caregiving is both essential and highly respected in contemporary societies. In the U.S., very few
affordable alternatives to family caregiving are available for the care of individuals living with Alzheimer’s disease
and related dementia (ADRD). Protecting and promoting the health and well-being of family caregivers is crucial.
The daily care and supervision of a family member living with ADRD have been associated with threats to the
health and well-being of family caregivers, who often experience an overall decrease in quality of life indicators.
Although more is known about the relationship of caregiving and psychosocial distress, such as depression, far
less is known of the relationship between ADRD caregiving and physical health indicators and the relationship
between changes in these indicators and health outcomes. Furthermore, not all caregivers have poor health
effects, but we have little understanding of the profile of various health responses to caregiving. In particular,
spouses of persons with ADRD are challenged by a chronic diseases and, for some, poor health outcomes; yet
the health effects of caregiving vary across caregivers with some having few physical health issues and others
having multiple physical health issues. A multidimensional approach inclusive of health indicators and outcomes
from multiple data sources is required to fill this gap in the study of the physical health of family caregivers. The
purpose of the proposed project is to characterize the health risks of ADRD spousal caregivers using self-reports
of physical health and functioning, clinical health indicators, and health care utilization data represented in
electronic health records (EHR). The research team will recruit spousal caregivers of individuals with ADRD,
extract various health indicators from EHRs, including health care utilization, and use survey methods with a
cross-sectional design to collect self-reported health and functioning as well as health behaviors. More
specifically, using latent class analysis, this proposal addresses three specific aims: 1) characterize health risk
profiles through a combination of objective and subjective assessments of health status among spousal
caregivers; 2) Identify the degree of intensity of caregiving experience and patterns of health care utilization
among spousal caregivers for the distinct health risk profiles determined in Aim 1; and 3) assess health promotion
behaviors that serve as protective factors in the relationship between stressful caregiving experiences and health
care utilization among subgroups of caregivers. Consistent with the purpose of the R21 funding mechanism, the
expected outcomes of the project will provide a method for monitoring spousal caregiver health indicators. The
study will inform the development of tailored interventions to address health risks among spousal ADRD
caregivers. Findings from the study will provide the need for, and design of caregiver health risk identification
algorithms that can be integrated into EHRs. The long-term goal of the proposed research is to improve
recognition of caregivers’ health risks and to develop tailored interventions that reduce caregivers’ physical
health burdens associated with providing continuous care for their spouses with ADRD in health care systems.
在当代社会中,家庭和睦是必不可少的,也是受到高度尊重的。在美国,很少
老年痴呆症患者可以通过负担得起的家庭护理替代方案获得护理
相关痴呆(ADRD)保护和促进家庭照顾者的健康和福祉至关重要。
对患有ADRD的家庭成员的日常护理和监督与对患者的威胁有关。
家庭照顾者的健康和福祉,他们的生活质量指标往往全面下降。
尽管人们对抑郁症和心理社会痛苦(如抑郁症)之间的关系了解得更多,
ADRD发病率与身体健康指标之间的关系知之甚少,
这些指标的变化与健康结果之间的关系。此外,并非所有照顾者的健康状况都不佳
影响,但我们对各种健康反应的概况知之甚少。特别是,
ADRD患者的配偶受到慢性疾病的挑战,对于一些人来说,健康状况不佳;然而,
护理对健康的影响因护理人员而异,有些人几乎没有身体健康问题,而另一些人则没有身体健康问题
有多种身体健康问题。包括健康指标和成果的多层面办法
需要从多个数据来源,以填补这一空白的家庭照顾者的身体健康的研究。的
拟议项目的目的是使用自我报告描述ADRD配偶照顾者的健康风险
身体健康和功能,临床健康指标和卫生保健利用数据,
电子健康记录(EHR)。研究小组将招募ADRD患者的配偶照顾者,
从电子健康记录中提取各种健康指标,包括医疗保健利用率,并使用调查方法,
横断面设计收集自我报告的健康和功能以及健康行为。更
具体地说,利用潜在类别分析,该建议提出了三个具体目标:1)表征健康风险
通过结合对配偶健康状况的客观和主观评估,
护理人员; 2)确定护理经验的强度和卫生保健利用的模式
目标1中确定的不同健康风险状况;以及3)评估健康促进
在紧张的经历和健康之间的关系中作为保护因素的行为
照顾者亚群的照顾利用。根据R21供资机制的宗旨,
该项目的预期成果将提供一种监测配偶照顾者健康指标的方法。的
研究将为制定量身定制的干预措施提供信息,以解决配偶ADRD中的健康风险
照顾者研究结果将提供护理人员健康风险识别的需求和设计
可以集成到EHR中的算法。这项研究的长期目标是提高
认识到照顾者的健康风险,并制定有针对性的干预措施,减少照顾者的身体健康风险。
与在卫生保健系统中为患有ADRD的配偶提供持续护理相关的健康负担。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinmyoung Cho其他文献
Jinmyoung Cho的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 44.53万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 44.53万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 44.53万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 44.53万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 44.53万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 44.53万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 44.53万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 44.53万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 44.53万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 44.53万 - 项目类别:
Research Grant