Fast and Flexible Conjunction Coding in Biological and Artificial Vision
生物和人工视觉中快速灵活的联合编码
基本信息
- 批准号:10389898
- 负责人:
- 金额:$ 6.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-16 至 2025-04-15
- 项目状态:未结题
- 来源:
- 关键词:AnatomyArchitectureArtificial IntelligenceAttentionAutomobile DrivingBehaviorBiologicalBrainCodeCognitiveCognitive ScienceColorComplexComputer ModelsComputer Vision SystemsCrowdingData SetDevelopmentDoctor of PhilosophyEngineeringEnvironment DesignExhibitsFeedbackFunctional Magnetic Resonance ImagingFutureGlassHomologous GeneHumanImageIndustrializationInfluentialsLateralLinkLiteratureMentorshipMethodologyMethodsModelingModernizationNamesNatural experimentNeurologic DeficitNeuronsNeurosciencesPatientsPopulationPrevalencePsychophysicsRecurrenceResearchSafetyShapesStimulusStreamSumSyndromeTechniquesTechnologyTestingToyTrainingVisionVisualVisual AgnosiasVisual system structureWorkartificial neural networkbasecareercognitive neurosciencecomputational neurosciencedeep learningdeep neural networkexperienceexperimental studyflexibilityhuman modelimprovedneuroimagingneurophysiologynovelobject recognitionopen sourceoperationpresynapticrelating to nervous systemresponsesynergismtheoriesvision sciencevisual search
项目摘要
Project Summary
How does the human brain encode visual feature conjunctions? Two influential, yet disparate, research traditions
have proposed two different mechanisms. Research in neurophysiology and computer vision has explored static
conjunction coding, where feature conjunctions are automatically extracted via a feedforward hierarchy. While
efficient, this mechanism may be limited to encoding conjunctions enabled by the hierarchy's learned connectivity.
By contrast, research in cognitive psychology has explored dynamic conjunction coding, which sequentially
encodes task-relevant conjunctions via attentional selection. While slow, this mechanism is flexible and capable
of encoding any feature conjunction. Despite evidence for both mechanisms, their interplay remains unclear. In
this project, we leverage advances in deep learning and open neuroimaging datasets to understand how these
two mechanisms interact in the human brain, yielding the best of both worlds: fast, but flexible conjunction coding.
Through the three complementary Specific Aims, we advance our understanding of these fundamental issues in
vision science, and on a practical level, develop approaches that can be used to improve computer vision, aiding
the development of useful technologies like autonomous vehicles. In the course of this project, I will master
modern approaches in deep learning and computational neuroscience through the mentorship of my sponsor Dr.
Kriegeskorte and my co-sponsor Dr. Fusi, equipping me for a career leading a lab that bridges cognitive science,
neuroscience, and artificial intelligence.
Hypotheses: The human brain implements static conjunction coding via neural populations with “and-like” tuning
to feature combinations that emerges via feedforward convergence of neurons tuned to single features, while dy-
namic conjunction coding requires recurrent connections. Static conjunction coding can rapidly encode familiar,
but not unfamiliar conjunctions, while dynamic conjunction coding can encode any conjunction, but more slowly.
Aim 1: We use a massive open-source fMRI dataset to chart the prevalence of static conjunction coding through-
out the human visual system, using a method we developed in preliminary analyses.
Aim 2: We apply “synthetic neurophysiology” to feedforward artificial neural networks to understand how static
conjunction coding emerges in a feedforward hierarchy, beginning by characterizing conjunction-tuned units iden-
tified in preliminary analyses, followed by testing influential models for how this occurs in biological vision.
Aim 3: We test whether feedforward artificial neural networks exhibit similar limitations on a visual search task
compared to known results for human feedforward vision, followed by testing whether introducing recurrent con-
nections to networks can overcome these limitations.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JohnMark Edward Taylor其他文献
JohnMark Edward Taylor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JohnMark Edward Taylor', 18)}}的其他基金
Fast and Flexible Conjunction Coding in Biological and Artificial Vision
生物和人工视觉中快速灵活的联合编码
- 批准号:
10611323 - 财政年份:2022
- 资助金额:
$ 6.68万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 6.68万 - 项目类别:
Continuing Grant
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
- 批准号:
2339197 - 财政年份:2024
- 资助金额:
$ 6.68万 - 项目类别:
Standard Grant
Travel: Student Travel Support for the 51st International Symposium on Computer Architecture (ISCA)
旅行:第 51 届计算机体系结构国际研讨会 (ISCA) 的学生旅行支持
- 批准号:
2409279 - 财政年份:2024
- 资助金额:
$ 6.68万 - 项目类别:
Standard Grant
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
- 批准号:
2419386 - 财政年份:2024
- 资助金额:
$ 6.68万 - 项目类别:
Standard Grant
I-Corps: Highly Scalable Differential Power Processing Architecture
I-Corps:高度可扩展的差分电源处理架构
- 批准号:
2348571 - 财政年份:2024
- 资助金额:
$ 6.68万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329759 - 财政年份:2024
- 资助金额:
$ 6.68万 - 项目类别:
Standard Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
- 批准号:
2904511 - 财政年份:2024
- 资助金额:
$ 6.68万 - 项目类别:
Studentship
The architecture and evolution of host control in a microbial symbiosis
微生物共生中宿主控制的结构和进化
- 批准号:
BB/X014657/1 - 财政年份:2024
- 资助金额:
$ 6.68万 - 项目类别:
Research Grant
RACCTURK: Rock-cut Architecture and Christian Communities in Turkey, from Antiquity to 1923
RACCTURK:土耳其的岩石建筑和基督教社区,从古代到 1923 年
- 批准号:
EP/Y028120/1 - 财政年份:2024
- 资助金额:
$ 6.68万 - 项目类别:
Fellowship
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
- 批准号:
2344424 - 财政年份:2024
- 资助金额:
$ 6.68万 - 项目类别:
Standard Grant














{{item.name}}会员




