Quantitative framework to predict CTEPH surgical outcome from imaging
通过影像学预测 CTEPH 手术结果的定量框架
基本信息
- 批准号:10389736
- 负责人:
- 金额:$ 3.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-23 至 2024-01-22
- 项目状态:已结题
- 来源:
- 关键词:AgreementAlgorithmsAnatomyAngiographyBenefits and RisksBlood VesselsClassificationClinicalClinical DataClinical assessmentsDataData SetDecision MakingDiseaseDistalEvaluationExcisionFutureGoalsGoldHealthImageImpairmentInstitutionKnowledgeLeadLearningLocationLungMachine LearningMeasuresMicrovascular DysfunctionModernizationMulticenter StudiesObstructionOperative Surgical ProceduresOutcomePatient CarePatient SelectionPatient imagingPatientsPerfusionPhenotypePhysiciansPostoperative PeriodPulmonary HypertensionPulmonary Vascular ResistanceReproducibilityResearchRiskSeveritiesSeverity of illnessStandardizationStructureStructure of parenchyma of lungSurgeonTechniquesTestingThromboendarterectomyTrainingVascular resistanceVisualWeightWorkX-Ray Computed Tomographyalternative treatmentbasecareerchronic thromboembolic pulmonary hypertensionconvolutional neural networkdesignexperiencehemodynamicshigh resolution imagingimaging modalityimaging studyimprovedinnovationlung volumemortalityneural networkoptimal treatmentspreventpulmonary vascular disorderright ventricular failuresurgery outcometool
项目摘要
Project Summary
The proposal “Quantitative framework to predict CTEPH surgical outcome from imaging” has a long term
objective of improving matching of Chronic Thromboembolic Pulmonary Hypertension (CTEPH) patients to
their optimum therapy. Currently, advancement of this goal is limited by the lack of quantitative tools and
metrics available to physicians to standardize evaluation of patient disease seen on imaging. In this proposal,
we aim to tackle two different aspects of this problem. First, we aim to develop metrics to comprehensively
quantify disease from imaging in a manner that informs disease severity. In this first aim, we are using dual-
energy CT images to capture, from a single study, both the amount and location of vascular obstruction,
perfusion deficit, and their relationship to one another. These metrics will be robustly designed to incorporate
all levels of the vasculature (proximal to distal), to capture a range of occlusion severities, and to use location
weightings based on surgical treatment accessibility. The utility of the metrics will be in their ability to inform
both pre and post operative invasive hemodynamics. Our second aim of the proposal is to utilize CT pulmonary
angiograms to predict the surgical accessibility of patient disease. We will train convolutional neural networks
to predict the vascular location (and therefore surgical accessibility) of CTEPH using the UCSD surgical
disease level classification. Neural networks will greatly aid in systematic prediction of disease location, since
they can analyze images without data loss, and can also incorporate both clinical and imaging data. Because
UCSD performs the highest volume of pulmonary thromboendarterectomy surgeries (a surgery to remove the
CTEPH vascular obstructions) in the world, we are the only institution that has the required number of pre-
operative images and gold standard (surgically confirmed) assessed surgical disease level classifications to
train and evaluate a neural network approach. In future work, these tools can be combined to rapidly,
systematically, and quantitatively evaluate CTEPH patients. With these metrics that standardize evaluation, we
will be able to quantify factors that contribute to CTEPH phenotypes and determine which of these imaging
phenotypes are most responsive to surgery.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elizabeth M. Bird其他文献
Elizabeth M. Bird的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elizabeth M. Bird', 18)}}的其他基金
Quantitative framework to predict CTEPH surgical outcome from imaging
通过影像学预测 CTEPH 手术结果的定量框架
- 批准号:
10676727 - 财政年份:2022
- 资助金额:
$ 3.97万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 3.97万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 3.97万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 3.97万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 3.97万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 3.97万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 3.97万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 3.97万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 3.97万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 3.97万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 3.97万 - 项目类别:
Research Grant














{{item.name}}会员




