The Impact of Nucleotide Modification Patterns on Therapeutic Small Interfering RNA Activity in the Central Nervous System
核苷酸修饰模式对中枢神经系统治疗性小干扰 RNA 活性的影响
基本信息
- 批准号:10389434
- 负责人:
- 金额:$ 3.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-19 至 2024-08-18
- 项目状态:已结题
- 来源:
- 关键词:AffectArchitectureBar CodesBehavioralBilateralBindingBiochemicalBiologyBrainBrain regionCAG repeatCell NucleusCentral Nervous System DiseasesChemicalsChemistryCorpus striatum structureCytoplasmDataDevelopmentDiseaseDisease ProgressionEnsureExonsFluorescence MicroscopyFunctional disorderGene SilencingGenesHigh-Throughput Nucleotide SequencingHuntington DiseaseHuntington geneHuntington proteinIn VitroInjectionsKineticsLengthLibrariesMeasuresMediatingMessenger RNAMethodsMicroscopyModificationMolecular ConformationMusNatureNerve DegenerationNeuraxisNeurodegenerative DisordersNuclearNuclear RNANucleotidesPathogenicityPathologyPatternPharmaceutical PreparationsPhysiologicalPositioning AttributePreparationProductionProteinsRNARNA BiochemistryRNA InterferenceRNA SplicingRNA-Induced Silencing ComplexResearchRiboseRodentRoleSmall Interfering RNASmall RNATestingTherapeuticTherapeutic InterventionTherapeutic StudiesTimeToxic effectTrinucleotide Repeat ExpansionWorkdesignflexibilitygait examinationin vivoinsightmRNA Expressionmotor deficitmutantneuron lossnonhuman primatenovel therapeuticsoptimal treatmentspolyglutamineprogressive neurodegenerationsingle moleculetooltranscriptome sequencingtreatment strategyuptake
项目摘要
PROJECT SUMMARY
Huntington’s Disease (HD) is caused by a CAG trinucleotide repeat expansion in exon 1 of the Huntingtin (HTT)
gene that produces mutant HTT mRNA and protein. Expression of mutant HTT leads to progressive
neurodegeneration via mechanisms that are poorly understood. Because HD is a genetically-defined disease, it
is an ideal candidate for study and therapeutic intervention by small interfering RNAs (siRNAs) – which
incorporate into the RNA-induced silencing complex (RISC) to target and degrade disease-causing genes. With
the development of a divalent (di)-siRNA chemical architecture, siRNAs can be delivered throughout the central
nervous system (CNS) of rodents and non-human primates. To ensure stability in the CNS, di-siRNAs require
chemical modifications on every nucleotide. However, chemical modifications can affect siRNA activity and
cellular localization – limiting the utility and flexibility of di-siRNAs in the CNS.
The most common nucleotide modifications in siRNA replace the 2′OH of the ribose with 2′-Fluoro (2′F) or 2′-O-
Methyl (2′OMe). Recent work suggests that incorporation of 2′OMe and 2′F at certain nucleotide positions may
hinder siRNA loading into RISC or target binding/cleavage by RISC, and may alter the nuclear-to-cytoplasmic
localization of siRNAs. Yet, the limited scope of this work has made it difficult to identify general design
parameters for efficacious, compartment-specific siRNA. With guidance from Drs. Anastasia Khvorova (siRNA
chemistry), Neil Aronin (HD), Phillip Zamore (RNA biochemistry) and Athma Pai (RNA sequencing), this
proposal will systematically assess the impact of modification patterns on siRNA efficacy and cellular localization
in the CNS to optimize siRNAs as an HD therapy and research tool for dissecting HD pathology.
Aim 1 will characterize how siRNA chemical modifications impact RISC loading in vivo and target binding and
cleavage in vitro. To measure how modifications alter RISC loading, a pool of differentially-modified siRNAs will
be injected into the CNS of mice, RISC will be pulled down and loaded siRNAs will be sequenced. To determine
the effect of siRNA chemical modifications on RISC-target interactions, target binding and cleavage kinetics will
be measured for a panel of modified siRNAs using single-molecule total internal reflection fluorescence
microscopy. Mechanistic insight into how modifications impact siRNA efficacy in the CNS will provide a
framework with which to design optimized siRNAs to treat HD and other CNS diseases. Aim 2 will use the same
modified siRNA pool from Aim 1 to identify optimal modification patterns for enhanced nuclear localization of
siRNA in the CNS. These data will be used to design efficacious chemically-modified di-siRNAs targeting nuclear
or cytoplasmic-only HTT RNA. These di-siRNA will then be injected into YAC128 HD mice and the effect on
motor deficits, neurodegeneration, and striatal mRNA expression will be assessed. These results will provide
valuable insight into the biology of HD and determine the potential of nuclear RNA-targeting siRNAs as a
therapeutic paradigm for repeat expansion disorders with underlying RNA toxicity.
项目摘要
亨廷顿氏病(HD)是由亨廷顿(Huntingtin
产生突变体HTT mRNA和蛋白质的基因。突变体HTT的表达导致渐进式
神经退行性通过不理理解的机制。因为高清是一种遗传定义的疾病,所以
是小型干扰RNA(siRNA)进行研究和治疗干预的理想候选者 -
纳入RNA诱导的沉默复合物(RISC),以靶向并降解引起疾病的基因。和
可以在整个中央交付二价(DI)-SiRNA化学体系结构的开发
啮齿动物和非人类隐私的神经系统(CNS)。为了确保中枢神经系统的稳定性,di-sirnas需要
每种核苷酸的化学修饰。但是,化学修饰会影响siRNA活性和
细胞定位 - 限制CNS中二核NAS的效用和灵活性。
siRNA中最常见的核苷酸修饰用2'-氟(2'f)或2'-o-取代核糖的2'OH。
甲基(2'ome)。最近的工作表明,在某些核苷酸位置合并了2'OME和2'f的材料可能
阻碍siRNA加载到RISC或RISC的目标结合/裂解中,并可能改变核对胞质
sirnas的本地化。然而,这项工作的有限范围使得难以识别一般设计
有效,室特异性siRNA的参数。在Drs的指导下。 Anastasia Khvorova(siRNA)
化学),Neil Aronin(HD),Phillip Zamore(RNA生物化学)和Athma Pai(RNA测序),此
提案将系统地评估修饰模式对siRNA效率和细胞定位的影响
在中枢神经系统中,将siRNA作为HD疗法和研究工具优化,用于剖析HD病理。
AIM 1将表征siRNA化学修饰如何影响RISC在体内和目标结合和目标结合以及
体外切割。为了衡量修改如何改变RISC加载,将差异化的siRNA池
被注射到小鼠的中枢神经系统中,RISC将被拉下来,并将加载siRNA。确定
siRNA化学修饰对RISC-TARGET相互作用,目标结合和裂解动力学的影响将
使用单分子的总内反射荧光对一组改良的siRNA进行测量
显微镜。关于修饰如何影响CNS siRNA效率的机械洞察力将提供
设计优化的siRNA以治疗高清和其他中枢神经系统疾病的框架。 AIM 2将使用相同的
AIM 1的修改siRNA池以确定最佳的修饰模式,以增强核定位的核定位置
中枢神经系统中的siRNA。这些数据将用于设计靶向核的有效化学修饰的Di-SiRNA
或仅细胞质的HTT RNA。然后,这些二核NA将被注入Yac128 HD小鼠,并对
运动定义,神经变性和纹状体mRNA表达将被评估。这些结果将提供
对HD生物学的有价值的见解,并确定涉及核RNA的siRNA的潜力
具有潜在RNA毒性的重复扩张障碍的治疗范式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samuel Hildebrand其他文献
Samuel Hildebrand的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samuel Hildebrand', 18)}}的其他基金
The Impact of Nucleotide Modification Patterns on Therapeutic Small Interfering RNA Activity in the Central Nervous System
核苷酸修饰模式对中枢神经系统治疗性小干扰 RNA 活性的影响
- 批准号:
10543749 - 财政年份:2021
- 资助金额:
$ 3.15万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Temporospatial Single-Cell Characterization of Angiogenesis and Myocardial Regeneration in Small and Large Mammals
小型和大型哺乳动物血管生成和心肌再生的时空单细胞表征
- 批准号:
10751870 - 财政年份:2023
- 资助金额:
$ 3.15万 - 项目类别:
"Novel Mouse Models for Quantitative Understanding of Baseline and Therapy-Driven Evolution of Prostate Cancer Metastasis"
“用于定量了解前列腺癌转移的基线和治疗驱动演变的新型小鼠模型”
- 批准号:
10660349 - 财政年份:2023
- 资助金额:
$ 3.15万 - 项目类别:
Resolving Oral Bacteria Interactions with a High-Throughput Low-Cost Single-Cell Transcriptomics Approach
采用高通量低成本单细胞转录组学方法解决口腔细菌相互作用
- 批准号:
10678379 - 财政年份:2023
- 资助金额:
$ 3.15万 - 项目类别:
Molecular ontology of drug tolerant persisters in HER2 positive breast cancer - Resubmission - 1
HER2 阳性乳腺癌耐药者的分子本体论 - 重新提交 - 1
- 批准号:
10545025 - 财政年份:2022
- 资助金额:
$ 3.15万 - 项目类别:
Resolving the effects of dietary fat induced maternal CXCL12 on offspring hypothalamus using spatial gene transcriptomics
利用空间基因转录组学解析膳食脂肪诱导的母体 CXCL12 对后代下丘脑的影响
- 批准号:
10686263 - 财政年份:2022
- 资助金额:
$ 3.15万 - 项目类别: