Delineating chromatin-related gene expression signatures as a function of HNSCC progression

描绘染色质相关基因表达特征作为 HNSCC 进展的函数

基本信息

  • 批准号:
    10390319
  • 负责人:
  • 金额:
    $ 40.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

Summary Oral squamous cell carcinoma (OSCC), the most common subtype of head and neck carcinoma (HNSCC), has very few targeted therapies available and poor overall survival. Novel strategies based on the high-throughput analyses offer new hope for improved risk assessment, early cancer detection, therapeutic intervention and tumor surveillance, but the impact of these strategies has been limited by an incomplete understanding of the biology of oral cancer, particularly in its early developmental stages. Like other solid malignancies, OSCCs begin as pre-neoplastic cellular proliferation that are driven by the serial acquisition of genetic and epigenetic alterations. Nearly 20% of patients with OSCC harbor multiple pre-malignant lesions showing signs of dysplasia, often visually identified as leukoplakia or erythroplakia. As some of these lesions evolve to malignant neoplasms, they represent intermediate steps in OSCC progression. This multi-step process from normal epithelium to early premalignant change to carcinoma in situ (CIS) and fully invasive carcinoma, provides a rational framework for studying molecular alterations underlying the OSCC progression. However, relatively few oncogenic mutations critical to the development of OSCC are currently recognized, impeding discovery of novel targeted therapeutics. Moreover, mutations alone are insufficient to explain the broad spectrum of gene expression changes that characterize OSCC. Whole-genome distribution of enhancers, the functional elements of the chromatin, is associated with the development of multiple solid malignancies, and mediates widespread genomic changes including expression of known cancer driver genes. Although it is becoming apparent that enhancers are the critical regulators of their target genes, and enhancer genomic elements are rapidly emerging as potent targets for anti-cancer therapeutics, the association between chromatin modifications and gene expression patterns in OSCC is not yet defined, and no comprehensive molecular information is available in oral pre-neoplastic lesions. This project will use novel bioinformatics and experimental approaches to test the central hypothesis that transcriptional changes, which arise during OSCC carcinogenesis, are enabled by dynamic chromatin alterations. Our integrated analysis will couple the gene expression and methylation landscape with a corresponding evaluation of the cancer- specific enhancer phenotype throughout the continuum of OSCC progression. Characterizing the timing and manner by which gene expression alterations coincide with markers of chromatin organization in sequentially progressive lesions within the oral cavity (e.g. mild dysplasia, moderate dysplasia, severe dysplasia/CIS, and invasive OSCC) will yield the first comprehensive epigenetic map of HNSCC evolution, and will define the key epigenetically regulated genes that drive OSCC carcinogenesis. Furthermore, evaluating their biological and clinical relevance may open up a fertile avenue for developing novel intervention strategies targeting these genes at various developmental stages of HNSCC.
总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daria A Gaykalova其他文献

Daria A Gaykalova的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daria A Gaykalova', 18)}}的其他基金

Delineating chromatin-related gene expression signatures as a function of HNSCC progression
描绘染色质相关基因表达特征作为 HNSCC 进展的函数
  • 批准号:
    10331096
  • 财政年份:
    2020
  • 资助金额:
    $ 40.72万
  • 项目类别:
Delineating chromatin-related gene expression signatures as a function of HNSCC progression
描绘染色质相关基因表达特征作为 HNSCC 进展的函数
  • 批准号:
    10620313
  • 财政年份:
    2020
  • 资助金额:
    $ 40.72万
  • 项目类别:
Delineating chromatin-related gene expression signatures as a function of HNSCC progression
描绘染色质相关基因表达特征作为 HNSCC 进展的函数
  • 批准号:
    9923627
  • 财政年份:
    2019
  • 资助金额:
    $ 40.72万
  • 项目类别:
Delineating chromatin-related gene expression signatures as a function of HNSCC progression
描绘染色质相关基因表达特征作为 HNSCC 进展的函数
  • 批准号:
    10053475
  • 财政年份:
    2019
  • 资助金额:
    $ 40.72万
  • 项目类别:
Characterizing genome-wide alternative splicing in HPV related HNSCC
HPV 相关 HNSCC 中全基因组选择性剪接的特征
  • 批准号:
    8952460
  • 财政年份:
    2015
  • 资助金额:
    $ 40.72万
  • 项目类别:
Characterizing genome-wide alternative splicing in HPV related HNSCC
HPV 相关 HNSCC 中全基因组选择性剪接的特征
  • 批准号:
    9099807
  • 财政年份:
    2015
  • 资助金额:
    $ 40.72万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.72万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 40.72万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 40.72万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 40.72万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 40.72万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 40.72万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 40.72万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 40.72万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 40.72万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 40.72万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了