Revealing molecular determinants of transcript-specific regulation in pre-mRNA splicing via rapid in vivo kinetic rate measurements
通过快速体内动力学速率测量揭示前 mRNA 剪接中转录特异性调节的分子决定因素
基本信息
- 批准号:10211761
- 负责人:
- 金额:$ 32.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-05 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AllelesAlternative SplicingAreaCell Culture TechniquesChemicalsChromatinComplementComplexCouplingDNA-Directed RNA PolymeraseDataDetectionDiseaseElementsEnvironmentEnzymesEquilibriumEtiologyEukaryotaFission YeastGene ExpressionGene StructureGenesGeneticGenetic TranscriptionGoalsHumanIndividualIntronsKineticsKnowledgeLabelMammalian CellMeasurementMeasuresMessenger RNAMetabolicMethodologyMolecularMonitorMutationOrganismPathway interactionsPrimer ExtensionProcessPropertyProtein IsoformsProteomeRNARNA SplicingReactionRegulationRegulatory ElementResolutionRoleSaccharomycetalesSiteSpliceosome Assembly PathwaySpliceosomesTechniquesTestingTranscriptTranscription ElongationVariantWorkYeastsbaseexperimental studygenetic variantgenome-widehuman diseaseimprovedin vivoinsightmRNA Precursornoveltooltranscriptome sequencing
项目摘要
ABSTRACT
It has long been known that pre-messenger RNA (pre-mRNA) splicing is an essential component of gene
expression in eukaryotic organisms, yet the past decade has seen a dramatic increase in our appreciation for its
role in regulating gene expression1. Most higher eukaryotes, including humans, regulate alternative splicing as
a tool for proteome expansion, and an ever-increasing number of human diseases are associated with mutations
in this pathway2,3. The mechanisms by which the spliceosome, which catalyzes pre-mRNA splicing, enacts this
regulation is a complex problem whose solution remains poorly understood yet will be critical to understanding
the etiology of many diseases. Proper regulation requires the spliceosome to faithfully assemble upon and
activate ‘cognate’ splice site sequences in the background of scores of aberrant, ‘near-cognate’ splice sites, yet
the spliceosome must balance this high fidelity splice site selection with the need for rapid, efficient splicing. At
the simplest level, improved knowledge of how the spliceosome achieves this balance will require understanding
both: (1) the landscape of cis-regulatory elements at splice sites that enable them to be distinguished as either
‘cognate’ or ‘non-cognate’; and (2) the mechanisms by which the spliceosome discriminates between such sites.
In the work described here, we seek to better understand basic mechanisms of pre-mRNA splicing regulation
by leveraging a powerful methodology recently developed in my lab called Multiplexed Primer Extension
sequencing, or MPE-seq. Our approach is unique in that it allows for the genome-wide detection of pre-mRNA
splicing intermediates. By combining this technique with rapid metabolic RNA labeling techniques developed by
others, my group has now determined the in vivo rates of both chemical steps of pre-mRNA splicing across the
complement of spliced transcripts in budding yeast. Remarkably, these data reveal a wide variation among the
rates, both between the two steps for individual transcripts and between different transcripts. The goals of the
work described here are to leverage the information derived from these experiments to push our understanding
of the principles that underlie this regulation.
摘要
人们早就知道前信使RNA(pre-mRNA)拼接是基因的重要组成部分
在真核生物中的表达,但在过去的十年里,我们对它的认识急剧增加,
调节基因表达的作用1.大多数高等真核生物,包括人类,调节选择性剪接,
作为蛋白质组扩展的工具,越来越多的人类疾病与突变有关
在这条路2,3.剪接体催化前体mRNA剪接的机制,
监管是一个复杂的问题,其解决方案仍然知之甚少,但对于理解至关重要
许多疾病的病因。适当的调节需要剪接体忠实地组装在
在大量异常的“近同源”剪接位点的背景下激活“同源”剪接位点序列,
剪接体必须平衡这种高保真剪接位点选择与快速、有效剪接的需要。在
在最简单的层面上,对剪接体如何实现这种平衡的进一步了解将需要理解
两者:(1)剪接位点的顺式调控元件的景观,使它们能够被区分为
“同源”或“非同源”;和(2)剪接体区分这些位点的机制。
在这里描述的工作中,我们试图更好地理解前体mRNA剪接调控的基本机制
通过利用我实验室最近开发的一种强大的方法,
测序或MPE-seq。我们的方法是独特的,因为它允许全基因组检测前mRNA
剪接中间体。通过将该技术与由美国科学家开发的快速代谢RNA标记技术相结合,
其他人,我的小组现在已经确定了体内前mRNA剪接的两个化学步骤的速率,
芽殖酵母中剪接转录本的互补物。值得注意的是,这些数据显示,
率,无论是两个步骤之间的个人成绩单和不同的成绩单。的目标
这里描述的工作是利用从这些实验中获得的信息来推动我们的理解
这一规定的基本原则。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEFFREY A PLEISS其他文献
JEFFREY A PLEISS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEFFREY A PLEISS', 18)}}的其他基金
Revealing molecular determinants of transcript-specific regulation in pre-mRNA splicing via rapid in vivo kinetic rate measurements
通过快速体内动力学速率测量揭示前 mRNA 剪接中转录特异性调节的分子决定因素
- 批准号:
10589841 - 财政年份:2021
- 资助金额:
$ 32.8万 - 项目类别:
Revealing molecular determinants of transcript-specific regulation in pre-mRNA splicing via rapid in vivo kinetic rate measurements
通过快速体内动力学速率测量揭示前 mRNA 剪接中转录特异性调节的分子决定因素
- 批准号:
10383702 - 财政年份:2021
- 资助金额:
$ 32.8万 - 项目类别:
Mechanisms of environmentally regulated alternative splicing in S.Pombe
粟酒裂殖酵母中环境调控的选择性剪接机制
- 批准号:
9384342 - 财政年份:2011
- 资助金额:
$ 32.8万 - 项目类别:
Mechanisms of environmentally responsive splicing in S.Pombe
粟酒裂殖酵母环境响应性剪接机制
- 批准号:
8306895 - 财政年份:2011
- 资助金额:
$ 32.8万 - 项目类别:
Mechanisms of environmentally regulated alternative splicing in S.Pombe
粟酒裂殖酵母中环境调控的选择性剪接机制
- 批准号:
9979939 - 财政年份:2011
- 资助金额:
$ 32.8万 - 项目类别:
Mechanisms of environmentally regulated alternative splicing in S.Pombe
粟酒裂殖酵母中环境调控的选择性剪接机制
- 批准号:
9753758 - 财政年份:2011
- 资助金额:
$ 32.8万 - 项目类别:
Mechanisms of environmentally responsive splicing in S.Pombe
粟酒裂殖酵母环境响应性剪接机制
- 批准号:
8511731 - 财政年份:2011
- 资助金额:
$ 32.8万 - 项目类别:
Mechanisms of environmentally responsive splicing in S.Pombe
粟酒裂殖酵母环境响应性剪接机制
- 批准号:
8160578 - 财政年份:2011
- 资助金额:
$ 32.8万 - 项目类别:
相似海外基金
Alternative splicing of Grin1 controls NMDA receptor function in physiological and disease processes
Grin1 的选择性剪接控制生理和疾病过程中的 NMDA 受体功能
- 批准号:
488788 - 财政年份:2023
- 资助金额:
$ 32.8万 - 项目类别:
Operating Grants
RBFOX2 deregulation promotes pancreatic cancer progression through alternative splicing
RBFOX2 失调通过选择性剪接促进胰腺癌进展
- 批准号:
10638347 - 财政年份:2023
- 资助金额:
$ 32.8万 - 项目类别:
Long Noncoding RNA H19 Mediating Alternative Splicing in ALD Pathogenesis
长非编码 RNA H19 介导 ALD 发病机制中的选择性剪接
- 批准号:
10717440 - 财政年份:2023
- 资助金额:
$ 32.8万 - 项目类别:
Using proteogenomics to assess the functional impact of alternative splicing events in glioblastoma
使用蛋白质基因组学评估选择性剪接事件对胶质母细胞瘤的功能影响
- 批准号:
10577186 - 财政年份:2023
- 资助金额:
$ 32.8万 - 项目类别:
Alternative splicing regulation of CLTC in the heart
心脏中 CLTC 的选择性剪接调节
- 批准号:
10749474 - 财政年份:2023
- 资助金额:
$ 32.8万 - 项目类别:
Nitric oxide as a novel regulator of alternative splicing
一氧化氮作为选择性剪接的新型调节剂
- 批准号:
10673458 - 财政年份:2023
- 资助金额:
$ 32.8万 - 项目类别:
Alternative splicing as an evolutionary driver of phenotypic plasticity
选择性剪接作为表型可塑性的进化驱动力
- 批准号:
2884151 - 财政年份:2023
- 资助金额:
$ 32.8万 - 项目类别:
Studentship
Rescuing SYNGAP1 haploinsufficiency by redirecting alternative splicing
通过重定向选择性剪接挽救 SYNGAP1 单倍体不足
- 批准号:
10660668 - 财政年份:2023
- 资助金额:
$ 32.8万 - 项目类别:
CAREER: Mechanotransduction, transcription, and alternative splicing in cell biology
职业:细胞生物学中的机械转导、转录和选择性剪接
- 批准号:
2239056 - 财政年份:2023
- 资助金额:
$ 32.8万 - 项目类别:
Continuing Grant
Investigating the role of alternative splicing in the islets of Langerhans in developing diabetes.
研究朗格汉斯岛中选择性剪接在糖尿病发生中的作用。
- 批准号:
468851650 - 财政年份:2022
- 资助金额:
$ 32.8万 - 项目类别:
Research Grants