Analysis and Simulation of Bacterial Infections and Resource Strain in Hospitals during the COVID-19 Pandemic
COVID-19 大流行期间医院细菌感染和资源紧张的分析和模拟
基本信息
- 批准号:10220744
- 负责人:
- 金额:$ 120万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
PROJECT SUMMARY/ABSTRACT
Antimicrobial resistant (AR) pathogens remain a major cause of healthcare associated infections (HAIs) in the
United States. Indeed, the prevalence of these existing and emerging drug-resistant agents continues to
impose a heavy burden on U.S. healthcare systems. To better control existing AR pathogen-associated HAIs
and prepare for the possible emergence of a novel AR organism, better, more targeted identification and
intervention strategies need to be developed. Here, for this Modeling Infectious Diseases in Healthcare
Research Projects to Improve Prevention Research and Healthcare Delivery (MInD Healthcare) network
project, we propose to develop a hierarchy of new model-inference systems capable of simulating and
forecasting HAI outbreaks, quantifying individual patient colonization risk, and identifying optimal intervention
approaches. Specifically, we will use hospitalization records and diagnostic data for multiple AR pathogens
from four major hospitals in New York City to conduct a series of modeling studies. We will develop two
mathematical modeling structures: 1) a metapopulation model capable of simulating AR pathogen transmission
dynamics across multiple healthcare facilities; and 2) an agent-based model capable of simulating individual-
level patient infection status, transmission dynamics, and movements within multiple hospitals. These models
will be used in conjunction with Bayesian inference methods to simulate observed outbreaks of AR pathogens,
estimate critical epidemiological characteristics and asymptomatic carriage probabilities among individual
patients, and support development of an AR pathogen forecasting system. As the models are high dimension
and the observations are sparse, new inference methods, capable of data augmentation and efficient model
optimization, will also be developed. Additionally, we will use the optimized model structures to run free
simulations testing the effectiveness of six interventions: 1) hand hygiene and barrier precautions; 2) isolation
of infections; 3) environmental cleaning; 4) active patient screening within hospitals; 5) contact tracing; and 6)
screening at admission. These interventions will be tested singly and in bundles and used to inform targeted
control approaches. Further, we will develop a framework for identifying intervention bundles that maximally
reduce HAI rates given cost and logistical constraints. Lastly, we propose to collaborate with the CDC and the
other research groups in the MInD Healthcare network to develop standardized intervention scenarios and
inter-comparisons of simulated intervention outcomes among the different model forms used across the
network.
项目总结/摘要
抗微生物剂耐药(AR)病原体仍然是美国医疗保健相关感染(HAI)的主要原因。
美国的事实上,这些现有的和新出现的耐药药物的流行继续,
给美国的医疗体系带来沉重负担。更好地控制现有AR病原体相关HAI
并为可能出现的新AR生物体做好准备,更好、更有针对性的鉴定,
需要制定干预战略。在这里,对于这个医疗保健中的传染病建模,
改善预防研究和医疗保健提供(MInD医疗保健)网络的研究项目
项目,我们建议开发一个新的模型推理系统的层次结构,能够模拟和
预测HAI爆发,量化个体患者定植风险,并确定最佳干预措施
接近。具体来说,我们将使用多种AR病原体的住院记录和诊断数据
来自纽约市的四家主要医院,进行了一系列的建模研究。我们将开发两个
数学建模结构:1)能够模拟AR病原体传播的集合种群模型
跨多个医疗保健设施的动态;以及2)能够模拟个体-
各级患者感染状况、传播动态和多个医院内的移动。这些模型
将与贝叶斯推理方法结合使用,以模拟观察到的AR病原体爆发,
估计关键的流行病学特征和个体间无症状携带的概率
患者,并支持AR病原体预测系统的开发。由于模型是高维的,
并且观测值是稀疏的,新的推理方法,能够对数据进行扩充,建立高效的模型
优化,也将得到发展。此外,我们将使用优化的模型结构,
模拟测试六项干预措施的有效性:1)手部卫生和屏障预防措施; 2)隔离
感染; 3)环境清洁; 4)医院内的主动患者筛查; 5)接触者追踪;以及6)
入院时的筛查。这些干预措施将单独和捆绑测试,并用于告知目标
控制方法。此外,我们将开发一个框架,用于确定最大限度地
考虑到成本和后勤限制,降低人工智能费率。最后,我们建议与疾病预防控制中心和
MInD医疗保健网络中的其他研究小组开发标准化干预方案,
在不同的模型形式之间使用的模拟干预结果的相互比较,
网络
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sen Pei其他文献
Sen Pei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sen Pei', 18)}}的其他基金
Analysis and Simulation of Bacterial Infections and Resource Strain in Hospitals during the COVID-19 Pandemic
COVID-19 大流行期间医院细菌感染和资源紧张的分析和模拟
- 批准号:
10462466 - 财政年份:2020
- 资助金额:
$ 120万 - 项目类别:
Analysis and Simulation of Bacterial Infections and Resource Strain in Hospitals during the COVID-19 Pandemic
COVID-19 大流行期间医院细菌感染和资源紧张的分析和模拟
- 批准号:
10669688 - 财政年份:2020
- 资助金额:
$ 120万 - 项目类别:
相似国自然基金
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
BEORHN: Bacterial Enzymatic Oxidation of Reactive Hydroxylamine in Nitrification via Combined Structural Biology and Molecular Simulation
BEORHN:通过结合结构生物学和分子模拟进行硝化反应中活性羟胺的细菌酶氧化
- 批准号:
BB/V016660/1 - 财政年份:2022
- 资助金额:
$ 120万 - 项目类别:
Research Grant
BEORHN: Bacterial Enzymatic Oxidation of Reactive Hydroxylamine in Nitrification via Combined Structural Biology and Molecular Simulation
BEORHN:通过结合结构生物学和分子模拟进行硝化反应中活性羟胺的细菌酶氧化
- 批准号:
BB/V016768/1 - 财政年份:2022
- 资助金额:
$ 120万 - 项目类别:
Research Grant
Analysis and Simulation of Bacterial Infections and Resource Strain in Hospitals during the COVID-19 Pandemic
COVID-19 大流行期间医院细菌感染和资源紧张的分析和模拟
- 批准号:
10462466 - 财政年份:2020
- 资助金额:
$ 120万 - 项目类别:
Analysis and Simulation of Bacterial Infections and Resource Strain in Hospitals during the COVID-19 Pandemic
COVID-19 大流行期间医院细菌感染和资源紧张的分析和模拟
- 批准号:
10669688 - 财政年份:2020
- 资助金额:
$ 120万 - 项目类别:
Devof a elopment new simulation-guided approach to design antimicrobial peptides with high selectivity towards individual bacterial species
开发一种新的模拟引导方法来设计对单个细菌物种具有高选择性的抗菌肽
- 批准号:
BB/S017844/1 - 财政年份:2019
- 资助金额:
$ 120万 - 项目类别:
Research Grant
Modeling and Simulation of Bacterial Outer Membranes and Interactions with Proteins
细菌外膜及其与蛋白质相互作用的建模和模拟
- 批准号:
1810695 - 财政年份:2018
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Meso-scale modeling, analysis and simulation of bacterial biofilms
细菌生物膜的细观建模、分析和模拟
- 批准号:
261336-2007 - 财政年份:2013
- 资助金额:
$ 120万 - 项目类别:
Discovery Grants Program - Individual
Meso-scale modeling, analysis and simulation of bacterial biofilms
细菌生物膜的细观建模、分析和模拟
- 批准号:
261336-2007 - 财政年份:2012
- 资助金额:
$ 120万 - 项目类别:
Discovery Grants Program - Individual
Meso-scale modeling, analysis and simulation of bacterial biofilms
细菌生物膜的细观建模、分析和模拟
- 批准号:
261336-2007 - 财政年份:2011
- 资助金额:
$ 120万 - 项目类别:
Discovery Grants Program - Individual
Kinetic Monte Carlo Simulation of Bacterial Division Ring Force Generation
细菌分裂环力产生的动力学蒙特卡罗模拟
- 批准号:
394355-2010 - 财政年份:2010
- 资助金额:
$ 120万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's