In silico Randomized Control Trial Framework for Assessing Infection Control and Prevention Interventions in the Hospital

用于评估医院感染控制和预防干预措施的计算机随机对照试验框架

基本信息

项目摘要

Project Summary/Abstract Multidrug-resistant organisms (MDROs), particularly carbapenem-resistant organisms (CROs), are a major cause of healthcare-associated infections (HAIs). Though studies have found multiple interventions addressing MDRO colonization and transmission to be effective at reducing HAIs, implementation has lagged due to uncertainty regarding the most efficacious combinations of interventions. As patients are connected within healthcare facilities by the movement of healthcare workers (HCWs) and mobile equipment, evaluation of an intervention's impact on transmission and infection must consider these network dynamics. Additionally, each institution has its own staffing ratios, equipment management, and cleaning practices that inform the efficacy of an intervention. To address knowledge gaps regarding the most effective combinations of intervention strategies at an individual hospital, we will build a model framework that will provide hospital administrators and infection control experts with tools for quantifying individual patient risk factors for colonization and infection and for comparing the potential effectiveness of interventions to control HAIs. The aims of the project are: (1) to develop models to predict which patients are at highest risk for colonization and infection with MDROs using clinically relevant information collected during the normal course of care combined with operational data on staffing and equipment movement; (2) to utilize hospital- level models to quantify the combinatorial relationship between, and marginal impact of, additional interventions to reduce HAIs; and (3) to build a framework for other hospitals and healthcare systems to examine the effectiveness of interventions parameterized by their own institution's data. Models will start with the patient at the center, utilizing the rich covariate data stored in electronic health records to develop prediction models based on advanced machine learning. These prediction models will be translatable tools that can be directly incorporated into clinical care to assist clinicians in preventing HAIs. Data on patient-connectedness will form the foundation of hospital-level models that will allow for detailed examinations of the effectiveness of different combinations of interventions. Finally, a generalizable framework will be constructed and tested across a network of healthcare facilities. These models will directly inform CDC guidelines about MDRO prevention and aid clinicians in reducing the risk of HAIs.
项目总结/摘要 多重耐药微生物(MDRO),特别是碳青霉烯类耐药微生物(CRO), 是卫生保健相关感染(HAI)的主要原因。尽管研究发现 应对MDRO定植和传播的多种干预措施, 减少HAI,由于不确定最有效的方法, 干预措施的组合。由于患者在医疗机构内通过 医护人员(HCW)和移动的设备的移动, 对传播和感染的影响必须考虑这些网络动态。此外,每个 机构有自己的人员配备比例、设备管理和清洁做法, 告知干预的有效性。解决有关最有效方法的知识差距 在个别医院的干预策略组合,我们将建立一个模型, 该框架将为医院管理人员和感染控制专家提供工具, 量化个体患者定植和感染的风险因素并比较 干预措施对控制HAI的潜在有效性。该项目的目标是:(1) 开发模型来预测哪些患者的定植和感染风险最高, MDRO使用正常护理过程中收集的临床相关信息 结合人员配置和设备移动的业务数据;(2)利用医院- 水平模型,以量化之间的组合关系,和边际影响, 减少HAI的额外干预措施;(3)为其他医院建立框架, 医疗保健系统检查干预措施的有效性, 机构的数据。模型将以患者为中心,利用丰富的协变量数据 存储在电子健康记录中,以开发基于先进机器的预测模型 学习这些预测模型将成为可翻译的工具, 以帮助临床医生预防HAI。患者连接性数据将 形成医院级模型的基础,允许对 不同干预措施组合的有效性。最后,一个可推广的框架将 在医疗机构网络中构建和测试。这些模型将直接 告知CDC关于MDRO预防的指南,并帮助临床医生降低HAI的风险。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eili Ya'akov Klein其他文献

Eili Ya'akov Klein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eili Ya'akov Klein', 18)}}的其他基金

In silico Randomized Control Trial Framework for Assessing Infection Control and Prevention Interventions in the Hospital
用于评估医院感染控制和预防干预措施的计算机随机对照试验框架
  • 批准号:
    10662422
  • 财政年份:
    2020
  • 资助金额:
    $ 120万
  • 项目类别:
In silico Randomized Control Trial Framework for Assessing Infection Control and Prevention Interventions in the Hospital
用于评估医院感染控制和预防干预措施的计算机随机对照试验框架
  • 批准号:
    10462460
  • 财政年份:
    2020
  • 资助金额:
    $ 120万
  • 项目类别:

相似海外基金

A mobile health solution in combination with behavioral change approach to improve vaccination coverage and timeliness in Bangladesh: A cluster randomized control trial
移动健康解决方案与行为改变方法相结合,以提高孟加拉国的疫苗接种覆盖率和及时性:集群随机对照试验
  • 批准号:
    24K20168
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A cluster randomized controlled trial to evaluate pharmacy-based health promotion program to improve blood pressure control in Bangladesh, India and Pakistan
一项整群随机对照试验,旨在评估孟加拉国、印度和巴基斯坦基于药房的健康促进计划,以改善血压控制
  • 批准号:
    23K24566
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Randomized Control Trial of Nitazoxanide for the Treatment of Cryptosporidium Infection in Malnourished Children in Bangladesh
硝唑尼特治疗孟加拉国营养不良儿童隐孢子虫感染的随机对照试验
  • 批准号:
    10551559
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
2/2 Multi-Center CLEAN AIR 2 Randomized Control Trial in COPD
2/2 慢性阻塞性肺病多中心 CLEAN AIR 2 随机对照试验
  • 批准号:
    10722232
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
Neuroprotection following cardiac arrest: A Randomized Control Trial of Magnesium
心脏骤停后的神经保护:镁的随机对照试验
  • 批准号:
    10742460
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
Impact of Vitamin C on the Reduction of Opioid Consumption After an Emergency Department Visit for Acute Musculoskeletal Pain: A Double-Blind Randomized Control Trial
维生素 C 对急性肌肉骨骼疼痛急诊科就诊后减少阿片类药物消耗的影响:双盲随机对照试验
  • 批准号:
    479465
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Operating Grants
Randomized Control Trial of Positive Peers mHealth app as a clinic-based intervention to optimize HIV outcomes among young, minority persons living with HIV
积极同伴移动医疗应用程序的随机对照试验作为一种基于临床的干预措施,以优化年轻的少数族裔艾滋病毒感染者的艾滋病毒结果
  • 批准号:
    10819912
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
Wheelchair user physical activity training intervention to enhance cardiometabolic health (WATCH): A community-based randomized control trial
轮椅使用者身体活动训练干预以增强心脏代谢健康(WATCH):一项基于社区的随机对照试验
  • 批准号:
    10598219
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
Perioperative Anticoagulant Use for Surgery Evaluation Study Part 2 Randomized Control Trial
手术围手术期抗凝剂使用评估研究第 2 部分随机对照试验
  • 批准号:
    490097
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Operating Grants
A randomized control trial of G-POEM for gastroparesis to assess feasibility, safety, efficacy and physiological mechanisms
G-POEM 治疗胃轻瘫的随机对照试验,旨在评估可行性、安全性、有效性和生理机制
  • 批准号:
    10843438
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了