Zwitterionic Injectable Pellet (ZIP) microgels as an injectable cell carrier for iPSC-CMs for myocardial repair

两性离子注射颗粒 (ZIP) 微凝胶作为 iPSC-CM 的可注射细胞载体,用于心肌修复

基本信息

  • 批准号:
    10223917
  • 负责人:
  • 金额:
    $ 4.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-16 至 2022-06-15
  • 项目状态:
    已结题

项目摘要

Project Summary Progressive heart failure is the leading cause of death worldwide. It is an epidemic with a survival rate of 50% over 5 years, affecting 6.5 million Americans. During a heart attack, a myocardial infarction (MI), the human heart loses 1 billion cardiomyocytes (CMs) on average (beating cells of the heart). Here, the heart’s inability to regenerate lost cardiomyocytes is well-known, leading to a significant decline in functional output as the once- healthy, contractile myocardium is now a scar tissue that does not contribute to the force production of a beating heart. Current treatment options are limited to palliative drug regimens (ACE inhibitors, beta blockers) or ventricular assist devices (risk of infection, thrombosis, power supply), and, the only real cure historically has been a heart transplant (limited supply). Thus, we have shown that a stem-cell based approach with stem-cell- derived-CMs for transplantation post-MI shows promise in regenerating the heart. These transplants form long- term grafts that can beat synchronously with host myocardium in mice, rats, and guinea pigs. Even moreso, we recently completed a 4-year pivotal study in macaque monkeys that revealed stem-cell-derived-CMs show nearly complete recovery of ejection fraction (the amount of blood pumped with each beat). However, despite this progress, there are still several outstanding limitations keeping stem-cell-derived-cardiomyocytes from being an effective therapy. Notably, single-cell-suspensions are the current delivery method to the heart making effective engraftment a challenge: <20% of injected cells persist as long-term, stable grafts, thus, lending to high manufacturing costs, and limiting the amount of new myocardium (heart muscle) that can form. Cell survival and retention could be significantly improved with the use of a biomaterial platform. In the past, biomaterial options for engineered heart tissues have been cardiac patches or cells sheets, but their geometries limit these constructs from electrically coupling with host myocardium and must be directly sutured onto the myocardium (more invasive). However, the use of an injectable biomaterial, such as a hydrogel that can gel in situ (directly mixed with cells), is appealing. They can be delivered directly through a catheter into myocardium, provide easy support and dispersion of transplanted cells directly at the site of MI, and provide a scaffold for the cells. Zwitterionic Injectable Pellet (ZIP) microgels are biodegradable, have easily tunable chemistry, and can be functionalized to support the needs of encapsulated CMs. In Aim 1, we will address the suitability for ZIP to aid in cell survival and retention in vitro, to discover optimal gel formulation (microgel size, cell attachment to gel), as well as cell survival and proliferation within the gel. In Aim 2, we will test the hypothesis that our ZIP gel can improve cardiac regeneration in vivo when used as an injectate for stem-cell- derived-CMs by evaluating both (1) cell survival, proliferation, and engraftment histologically, and, (2) overall functional outcome via MRI and echocardiography. Studies in this proposal will directly impact and challenge current delivery methods for stem-cell-derived-CMs transplanted for cardiac repair.
项目摘要 进行性心力衰竭是全球死亡的主要原因。这是一种流行病,存活率为50%, 5年多来,影响了650万美国人。在心脏病发作、心肌梗死(MI)期间, 心脏平均损失10亿个心肌细胞(CM)(心脏的跳动细胞)。在这里,心脏无法 再生失去的心肌细胞是众所周知的,导致功能输出的显着下降,因为一旦- 健康的、可收缩的心肌现在是一种疤痕组织,它不有助于心肌的力量产生。 跳动的心脏目前的治疗选择仅限于姑息性药物方案(ACE抑制剂,β受体阻滞剂) 或心室辅助装置(感染、血栓形成、电源供应的风险),历史上唯一真实的治愈方法是 心脏移植(限量供应)。因此,我们已经表明,一种基于干细胞的方法, 用于MI后移植的衍生CM显示出再生心脏的前景。这些移植形成长- 在小鼠、大鼠和豚鼠中,可以与宿主心肌同步搏动的移植物。更何况,我们 最近完成了一项在猕猴身上进行的为期4年的关键性研究,该研究揭示了干细胞衍生的CM, 射血分数(每次心跳泵出的血量)几乎完全恢复。但尽管 尽管如此,仍然存在一些突出的限制,使干细胞衍生的心肌细胞从 是一种有效的治疗方法。值得注意的是,单细胞悬浮液是目前递送到心脏的方法 使有效的移植成为挑战:<20%的注射细胞作为长期、稳定的移植物持续存在,因此, 导致高制造成本,并限制新心肌(心肌)的数量, 可以形成。使用生物材料平台可以显著改善细胞存活和保留。在 过去,用于工程化心脏组织的生物材料选择是心脏补片或细胞片,但是它们的 几何形状限制了这些结构与宿主心肌的电耦合 更有侵略性(more invasive)。然而,使用可注射生物材料,例如水凝胶, 可以在原位凝胶(直接与细胞混合),是有吸引力的。它们可以通过导管直接输送到 心肌,提供直接在MI部位的移植细胞的容易的支持和分散,并提供 细胞的支架。两性离子可注射颗粒(ZIP)微凝胶是可生物降解的,具有容易调节的 化学,并且可以被官能化以支持封装的CM的需要。在目标1中,我们将讨论 ZIP在体外帮助细胞存活和保留、发现最佳凝胶制剂(微凝胶尺寸, 细胞附着于凝胶),以及凝胶内的细胞存活和增殖。在目标2中,我们将测试 假设我们的ZIP凝胶在用作干细胞注射剂时可以改善体内心脏再生, 通过评估(1)细胞存活、增殖和植入的组织学,以及(2)总体 通过MRI和超声心动图检查功能结果。这项研究将直接影响和挑战 目前用于心脏修复的干细胞衍生CM移植的递送方法。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mary Elizabeth O'Kelly其他文献

Mary Elizabeth O'Kelly的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了