Biomechanics of molecular machines and multiscale non-linear systems
分子机器和多尺度非线性系统的生物力学
基本信息
- 批准号:10397656
- 负责人:
- 金额:$ 64.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAneuploidyAutomobile DrivingBindingBinding ProteinsBiological AssayBiomechanicsCell divisionCellsChemicalsChimeric ProteinsChromatinChromosome SegregationChromosomesClosure by clampComplexDiffuseEquipmentExhibitsFosteringFrictionGenomic InstabilityHealthHela CellsHumanIndividualKinetochoresKnowledgeMacromolecular ComplexesMechanicsMicrotubule-Associated ProteinsMicrotubulesMissionMitoticMolecularMolecular MachinesMotionMotor ActivityNeuronal PlasticityPatternPhosphoric Monoester HydrolasesPhosphorylationPhysiologicalProcessPropertyProteinsPublic HealthRegulationResearchRoleShapesSpectrum AnalysisSubcellular structureSystemTestingTheoretical modelTimeTravelUnited States National Institutes of HealthWeight-Bearing stateWorkaurora B kinasebiophysical analysiscell motilityexperienceflexibilityimprovedin vitro Assayinnovationinsightnovel strategiesoperationparticlepreventscaffoldsingle moleculespatiotemporaltool
项目摘要
We work to determine the fundamental principles underlying the operation of molecular machines that give cells the
remarkable ability to segregate their chromosomes during cell division. Various force-sensitive interactions are essential
for mitotic fidelity, and are therefore critical to our understanding of aneuploidy and genomic instability. Over the last 5
years, we have developed molecular tools, equipment, and expertise to quantitatively and rigorously address central
questions about the role of force in chromosome segregation: (1) How do the macromolecular complexes that constitute
human kinetochores travel with dynamic microtubule ends under load? (2) How do individual microtubule-associated
proteins with no motor activity glide along microtubules under dragging force? (3) How does tension applied to the
centromeric chromatin meshwork shape the spatial phosphorylation gradients that orchestrate assembly of the
kinetochores and their binding to microtubules? We approach these problems using reductionist approaches and
innovative in vitro assays that reconstruct these interactions at multiple scales, and analyze our findings with advanced
theoretical modeling. (1) To recreate force-sensitive interactions between microtubules and human kinetochores, we
developed a novel approach for generating macromolecular kinetochore subcomplexes using inducible protein-fusion
scaffolds. When isolated from mitotic HeLa cells, these particles exhibit key physiological properties of native
kinetochores, including their persistent association with dynamic microtubule ends. This breakthrough will enable us for
the first time to study the motility of native human kinetochore complexes, driving forward our biophysical analysis of
kinetochore load-bearing. (2) We will investigate the force sensitivity of individual microtubule-binding proteins at the
single-molecule and ensemble levels using an advanced force spectroscopy approach. We have implemented a highly
sensitive dual-trap, three-bead assay employing an ultrafast force-clamp that allows us to pull on a single non-motor
molecule diffusing on the microtubule wall, imitating the forces these kinetochore-bound molecules experience during
chromosome motions. This approach will provide unique molecular-mechanical insights into the friction-generating
interface that allows the kinetochore to glide along microtubule, while preventing it from slipping from microtubule ends.
(3) We will seek to understand how mechanical deformations shape chemical gradients formed within the chemo-
mechanical meshworks, such as of the centromeric chromatin. Previously, we reconstructed a non-linear Aurora B
kinase/phosphatase bi-stable switch using soluble components. In a proof-of-principle study, we will embed these
enzymatic components into a flexible meshwork to test whether its deformations can control formation of distinct
phosphorylation patterns. Spatio-temporal regulation of the phosphorylation status of kinetochore proteins is central to
the error correction mechanism of microtubule attachment. Hence, our findings will provide new knowledge about this
fundamental process, and facilitate new discoveries about complex chemo-mechanical systems.
我们致力于确定分子机器运行的基本原理,分子机器赋予细胞
在细胞分裂过程中分离染色体的非凡能力。各种力敏感的相互作用是必不可少的
对于有丝分裂的保真度,因此对于我们理解非整倍体和基因组不稳定性是至关重要的。在过去5年中
多年来,我们已经开发了分子工具、设备和专业知识来定量和严格地处理中央
关于力在染色体分离中的作用的问题:(1)构成染色体的大分子复合体是如何
人类运动中枢在负荷下与动态微管末端一起运动?(2)单个微管如何与
没有运动活性的蛋白质在拖拉力的作用下沿着微管滑动?(3)张力如何作用于微管
着丝粒染色质网络形状空间磷酸化梯度,协调组装
动点及其与微管的结合?我们使用简化论的方法来处理这些问题
创新的体外试验在多个尺度上重建了这些相互作用,并分析了我们的发现
理论建模。(1)为了重现微管和人体运动中枢之间的力敏感相互作用,我们
开发了一种利用可诱导蛋白融合产生大分子动粒核亚复合体的新方法
脚手架。当从有丝分裂的HeLa细胞中分离出来时,这些颗粒表现出天然的关键生理特性
动点,包括它们与动态微管末端的持久联系。这一突破将使我们能够
首次研究天然人动粒复合体的运动性,推动了我们的生物物理分析
动粒承重。(2)我们将研究单个微管结合蛋白的力敏感性。
使用先进的力谱方法的单分子和系综能级。我们已经实施了高度的
灵敏的双捕捉器,三珠分析,使用超快的力钳,允许我们在单个非马达上拉动
分子在微管壁上扩散,模拟这些动粒结合的分子在
染色体运动。这种方法将为摩擦的产生提供独特的分子力学见解
允许动粒沿着微管滑动的界面,同时防止它从微管末端滑落。
(3)我们将试图了解机械变形如何影响化学-化学-化学过程中形成的化学梯度-
机械网络,如着丝粒染色质。之前,我们重建了一个非线性极光B
使用可溶性成分的激酶/磷酸酶双稳开关。在一项原则证明研究中,我们将嵌入这些
酶组分进入柔性网络,测试其变形是否能控制形成截然不同的
磷酸化模式。动粒蛋白磷酸化状态的时空调节是
微管附着的纠错机制。因此,我们的发现将提供有关这方面的新知识。
基本过程,并促进关于复杂化学机械系统的新发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ekaterina L Grishchuk其他文献
Ekaterina L Grishchuk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ekaterina L Grishchuk', 18)}}的其他基金
Biomechanics of molecular machines and multiscale non-linear systems
分子机器和多尺度非线性系统的生物力学
- 批准号:
10601048 - 财政年份:2021
- 资助金额:
$ 64.35万 - 项目类别:
Biomechanics of molecular machines and multiscale non-linear systems
分子机器和多尺度非线性系统的生物力学
- 批准号:
10204551 - 财政年份:2021
- 资助金额:
$ 64.35万 - 项目类别:
Molecular Biomechanics of Mitotic Chromosome Segregation
有丝分裂染色体分离的分子生物力学
- 批准号:
9762138 - 财政年份:2018
- 资助金额:
$ 64.35万 - 项目类别:
Coupling kinetochore microtubule dynamics to chromosome motion
将动粒微管动力学与染色体运动耦合
- 批准号:
8545869 - 财政年份:2012
- 资助金额:
$ 64.35万 - 项目类别:
Coupling kinetochore microtubule dynamics to chromosome motion
将动粒微管动力学与染色体运动耦合
- 批准号:
8723848 - 财政年份:2012
- 资助金额:
$ 64.35万 - 项目类别:
Coupling kinetochore microtubule dynamics to chromosome motion
将动粒微管动力学与染色体运动耦合
- 批准号:
8920151 - 财政年份:2012
- 资助金额:
$ 64.35万 - 项目类别:
Coupling kinetochore microtubule dynamics to chromosome motion
将动粒微管动力学与染色体运动耦合
- 批准号:
8293799 - 财政年份:2012
- 资助金额:
$ 64.35万 - 项目类别:
Coupling kinetochore microtubule dynamics to chromosome motion
将动粒微管动力学与染色体运动耦合
- 批准号:
9381209 - 财政年份:2012
- 资助金额:
$ 64.35万 - 项目类别:
Coupling kinetochore microtubule dynamics to chromosome motion
将动粒微管动力学与染色体运动耦合
- 批准号:
9130191 - 财政年份:2012
- 资助金额:
$ 64.35万 - 项目类别:
Regulation of cell division by mitotic kinases
有丝分裂激酶对细胞分裂的调节
- 批准号:
9230854 - 财政年份:2008
- 资助金额:
$ 64.35万 - 项目类别:
相似海外基金
Elucidating the effects of extra chromosome elimination in mosaic aneuploidy syndromes: Pallister-Killian syndrome as a model
阐明额外染色体消除对嵌合非整倍体综合征的影响:以 Pallister-Killian 综合征为模型
- 批准号:
10887038 - 财政年份:2023
- 资助金额:
$ 64.35万 - 项目类别:
Characterization of aneuploidy, cell fate and mosaicism in early development
早期发育中非整倍性、细胞命运和嵌合体的表征
- 批准号:
10877239 - 财政年份:2023
- 资助金额:
$ 64.35万 - 项目类别:
The impact of aneuploidy on early human development
非整倍体对人类早期发育的影响
- 批准号:
MR/X007979/1 - 财政年份:2023
- 资助金额:
$ 64.35万 - 项目类别:
Research Grant
Understanding how aneuploidy disrupts quiescence in the model eukaryote Saccharomyces cerevisiae
了解非整倍体如何破坏模型真核生物酿酒酵母的静止状态
- 批准号:
10735074 - 财政年份:2023
- 资助金额:
$ 64.35万 - 项目类别:
Preventing Age-Associated Oocyte Aneuploidy: Mechanisms Behind the Drosophila melanogaster Centromere Effect
预防与年龄相关的卵母细胞非整倍性:果蝇着丝粒效应背后的机制
- 批准号:
10538074 - 财政年份:2022
- 资助金额:
$ 64.35万 - 项目类别:
Functional evaluation of kinesin gene variants associated with female subfertility and egg aneuploidy.
与女性生育力低下和卵子非整倍性相关的驱动蛋白基因变异的功能评估。
- 批准号:
10537275 - 财政年份:2022
- 资助金额:
$ 64.35万 - 项目类别:
Using CRISPR screening to uncover aneuploidy-specific genetic dependencies
使用 CRISPR 筛选揭示非整倍体特异性遗传依赖性
- 批准号:
10661533 - 财政年份:2022
- 资助金额:
$ 64.35万 - 项目类别:
FASEB SRC: The Consequences of Aneuploidy: Honoring the Contributions of Angelika Amon
FASEB SRC:非整倍体的后果:纪念 Angelika Amon 的贡献
- 批准号:
10467260 - 财政年份:2022
- 资助金额:
$ 64.35万 - 项目类别:
Comparative Analysis of Aneuploidy and Cellular Fragmentation Dynamics in Mammalian Embryos
哺乳动物胚胎非整倍性和细胞破碎动力学的比较分析
- 批准号:
10366610 - 财政年份:2022
- 资助金额:
$ 64.35万 - 项目类别: