Enabling the Accelerated Discovery of Novel Chemical Probes by Integration of Crystallographic, Computational, and Synthetic Chemistry Approaches
通过整合晶体学、计算和合成化学方法,加速发现新型化学探针
基本信息
- 批准号:10398798
- 负责人:
- 金额:$ 54.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffinityAlgorithmsAntibodiesArtificial IntelligenceBindingBinding SitesBiological AssayBiophysicsBrachyury proteinBromodomainChemicalsComputational algorithmComputer softwareComputing MethodologiesConsensusCoupledDatabasesDevelopmentDockingFutureGoalsGraphHot SpotHumanHybridsHydrolaseLaboratoriesLeadLearningLibrariesLigand BindingLigandsMethodologyMethodsMiningModelingModernizationNaturePhosphotransferasesProceduresProteinsProteomePsychological reinforcementResourcesRoentgen RaysScreening procedureSeedsSpecificityStructureSynthesis ChemistryTestingValidationX-Ray Crystallographybasechemical synthesiscomputational chemistryconvolutional neural networkcostdesigndrug candidatedrug discoveryinnovationinterestiterative designmacromoleculenovelnovel strategiesprotein structure predictionscaffoldscreeningsmall moleculesmall molecule librariesstructural genomicssuccesstranscription factor
项目摘要
ABSTRACT
Identification of high-quality chemical probes, molecules with high specificity and selectivity against
macromolecules, is of critical interest to drug discovery. Although millions of compounds have been screened
against thousands of protein targets, small-molecule probes are currently available for only 4% of the human
proteome. Thus, more efficient approaches are required to accelerate the development of novel, target-specific
probes. In 2019, a new bold initiative called “Target 2035” was launched with the goal of “creating […] chemical
probes, and/or functional antibodies for the entire proteome” by 2035. In support of this ambitious initiative, we
propose to develop and test a novel integrative AI-driven methodology for rapid chemical probe discovery against
any target protein. Here, we will build an integrative workflow where the unique XChem database of experimental
crystallographic information describing the pose and nature of chemical fragments binding to the target protein
will be used in several innovative computational approaches to predict the structure of organic molecules with
high affinity towards specific targets. The candidate molecules will be experimentally validated and then
optimized, using computational algorithms, into lead molecules to seed chemical probe development. The
proposed project is structured around three following interrelated keystones: (i) Develop a novel method for
ligand-binding hot-spot identification and discovery of novel chemical probe candidates; (ii) Develop novel
fragment-based integrative computational approach for accelerated de novo design of chemical probes; (iii)
Consensus prediction of target-specific ligands, synthesis, and experimental validation of computational hits.
More specifically, we will develop a hybrid method to predict structures of high-affinity ligands for proteins for
which XChem fragment screens have been completed. These approaches will be used for screening of ultra-
large (>10 billion) chemical libraries to identify putative high affinity ligands within crystallographically determined
pockets. Then, we will develop and employ an approach using graph convolutional neural networks for de novo
design of a library of strong binders that will be evaluated to select the best candidates for chemical optimization.
Finally, we will combine traditional structure-based and novel approaches, developed in this project to select
consensus hit compounds against three target proteins: transcription factor brachyury, hydrolase NUDT5, and
bromodomain BAZ2B. Iterative design guided by the computational algorithms, synthesis, and testing will
progressively optimize molecules to micromolar leads to chemical probes for the target proteins.
Completion of the proposed aims will deliver a robust integrative workflow to identify leads for chemical
probes against diverse target proteins. We expect that our AI-based computational approach to convert
crystallographically-determined chemical fragments into lead compounds coupled with the experimental
validation of computational algorithms will accelerate the discovery of new chemical probes, expand the
druggable proteome, and support future drug discovery studies
摘要
鉴定高质量的化学探针,分子具有高度的特异性和选择性,
大分子,对药物发现至关重要。尽管已经筛选了数百万种化合物
针对成千上万的蛋白质靶点,目前只有4%的人可以使用小分子探针。
蛋白质组因此,需要更有效的方法来加速开发新的、靶特异性的药物组合物。
probes. 2019年,一项名为“目标2035”的新的大胆倡议启动,目标是“创造[...]化学品”。
到2035年,我们将研制出用于整个蛋白质组的探针和/或功能性抗体。为了支持这一雄心勃勃的倡议,我们
建议开发和测试一种新的综合人工智能驱动的方法,用于快速发现化学探针,
任何目标蛋白质。在这里,我们将建立一个集成的工作流程,其中独特的XChem实验数据库
描述与靶蛋白结合的化学片段的姿态和性质的晶体学信息
将用于几种创新的计算方法,以预测有机分子的结构,
对特定目标的高亲和力。候选分子将通过实验验证,
优化,使用计算算法,到铅分子种子化学探针的发展。的
拟议的项目是围绕以下三个相互关联的重点:(一)开发一种新的方法,
配体结合热点鉴定和发现新的化学探针候选物;(ii)开发新的
用于化学探针的加速从头设计的基于片段的综合计算方法;(iii)
目标特异性配体的一致性预测、合成和计算命中的实验验证。
更具体地说,我们将开发一种混合方法来预测蛋白质的高亲和力配体的结构,
哪些XChem片段筛选已完成。这些方法将用于筛选超-
大型(> 100亿)化学库,以鉴定晶体学确定的
口袋然后,我们将开发并采用一种使用图卷积神经网络的方法来从头开始
设计一个强粘合剂库,对该库进行评估以选择最佳候选物进行化学优化。
最后,我们将结合联合收割机传统的基于结构的方法和本项目开发的新方法来选择
针对三种靶蛋白的共有命中化合物:转录因子brachyury、水解酶NUDT 5和
溴结构域BAZ 2B。由计算算法、综合和测试指导的迭代设计将
逐步优化分子到微摩尔导致目标蛋白质的化学探针。
完成拟议目标将提供强大的综合工作流程,以确定化学品的潜在客户
针对不同靶蛋白的探针。我们希望我们基于人工智能的计算方法能够将
晶体学确定的化学碎片转化为铅化合物,
计算算法的验证将加速新化学探针的发现,扩大
药物蛋白质组,并支持未来的药物发现研究
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Tropsha其他文献
Alexander Tropsha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Tropsha', 18)}}的其他基金
STopTox: A comprehensive in silico platform for predicting systemic and topical toxicity
StopTox:用于预测全身和局部毒性的综合计算机平台
- 批准号:
10324720 - 财政年份:2021
- 资助金额:
$ 54.91万 - 项目类别:
Enabling the Accelerated Discovery of Novel Chemical Probes by Integration of Crystallographic, Computational, and Synthetic Chemistry Approaches
通过整合晶体学、计算和合成化学方法,加速新型化学探针的发现
- 批准号:
10613499 - 财政年份:2021
- 资助金额:
$ 54.91万 - 项目类别:
Artificial Intelligence Toolkit for Predicting Mixture Toxicity
用于预测混合物毒性的人工智能工具包
- 批准号:
10379210 - 财政年份:2021
- 资助金额:
$ 54.91万 - 项目类别:
ARAGORN: Autonomous Relay Agent for Generation Of Ranked Networks
ARAGORN:用于生成排名网络的自主中继代理
- 批准号:
10706749 - 财政年份:2020
- 资助金额:
$ 54.91万 - 项目类别:
ARAGORN: Autonomous Relay Agent for Generation Of Ranked Networks
ARAGORN:用于生成排名网络的自主中继代理
- 批准号:
10057067 - 财政年份:2020
- 资助金额:
$ 54.91万 - 项目类别:
ARAGORN: Autonomous Relay Agent for Generation Of Ranked Networks
ARAGORN:用于生成排名网络的自主中继代理
- 批准号:
10543636 - 财政年份:2020
- 资助金额:
$ 54.91万 - 项目类别:
Drug Repurposing for Cancer Therapy: From Man to Molecules to Man
癌症治疗的药物再利用:从人到分子再到人
- 批准号:
9337383 - 财政年份:2016
- 资助金额:
$ 54.91万 - 项目类别:
Robust computational framework for predictive ADME-Tox modeling
用于预测 ADME-Tox 建模的强大计算框架
- 批准号:
7433931 - 财政年份:2006
- 资助金额:
$ 54.91万 - 项目类别:
Protein Structure/Function Specific Packing Motifs
蛋白质结构/功能特异性包装基序
- 批准号:
7150789 - 财政年份:2006
- 资助金额:
$ 54.91万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 54.91万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 54.91万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 54.91万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 54.91万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 54.91万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 54.91万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 54.91万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 54.91万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 54.91万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 54.91万 - 项目类别:
Continuing Grant