Deciphering the inositol phosphate code in viral pathogenesis and immunity
破译病毒发病机制和免疫中的肌醇磷酸密码
基本信息
- 批准号:10397756
- 负责人:
- 金额:$ 7.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAffinityAmino AcidsAnti-Inflammatory AgentsAntiviral AgentsArtificial MembranesBacterial InfectionsBindingBiochemicalBiochemical GeneticsBiochemistryBiological AssayBiologyCRISPR/Cas technologyCell DeathCellsCellular AssayChargeCodeCollaborationsCollectionDevelopmentDiffuseDiseaseDrug DesignEconomic BurdenEukaryotic CellFoundationsGeneticGoalsHost DefenseHumanImmuneImmunityImmunomodulatorsIn VitroInfectionInfectious AgentInflammationInflammatoryInnate Immune ResponseInositolInositol PhosphatesKnock-outLaboratoriesLife Cycle StagesMalignant NeoplasmsMapsMass Spectrum AnalysisMediatingMediator of activation proteinMembraneMethodsMolecularMolecular GeneticsMolecular VirologyNecrosisNeurodegenerative DisordersPathogenesisPathologicPhosphotransferasesPlayProcessRNA replicationReagentRegulationReporterRhinovirusRhinovirus infectionRoleSignal PathwayTestingTherapeuticTranslationsViralViral PathogenesisVirusVirus DiseasesWorkantimicrobialantiviral immunitybasecytokinegenome-wideglobal healthimmunoregulationinsightischemic injurynew therapeutic targetnovelresponse
项目摘要
PROJECT SUMMARY
Inositol phosphates (IPs) are diffusible intracellular messengers (termed the “IP code”) that perform key
functions in the eukaryotic cell, yet the contributions of these molecules to immunity and host defense remains
underexplored. Through unbiased approaches, our laboratory has recently uncovered striking new roles for IP
molecules at the host-virus interface: (1) during necroptosis, a pro-inflammatory cell death mechanism critical
for antiviral immunity and (2) during infection with human rhinoviruses (RV), among the most common
infectious agents in human beings. We have found that IP kinase activity that produces the cellular IP
signature (i.e., IP3, IP4, IP5, IP6) is critical for both necroptosis and RV infection via apparently distinct
mechanisms. We showed that IP molecules can directly control the necroptotic executioner, mixed-lineage
kinase like (MLKL), to unleash necrotic cell death. In contrast, we found that RV infection depends on IPs at a
stage preceding cell death and independent of MLKL, indicating as yet unidentified host or viral targets for IPs.
However, it is currently unknown how the different IPs act to control these processes on a molecular level, how
IP kinases precisely collaborate to determine the cellular IP code, and how this code is regulated during
infection or cytokine stimulation to mediate immunity. Our central hypothesis is that inositol phosphates and
their kinases play important regulatory roles in innate immune responses and during viral infection through
interactions with host or viral targets. Here, we will determine the precise mechanisms for engagement of the
inositol phosphate code by these fundamental immune processes by employing a robust genetic and
biochemical toolkit and combining our expertise in molecular genetics and virology with a collaborative team of
leading experts in inositol phosphate biology and biochemistry. Specifically, we will (1) map the genetic and
physical interactions of IP species with the necroptotic executioner MLKL in cellular and biochemical assays,
and (2) define the molecular mechanism(s) governing regulation of RV infection by the IP code. Together,
these studies will provide fundamental insight into regulation of immune defenses and viral pathogenesis. We
expect this work to form a foundation for understanding the roles of the IP code in immunity and infection
biology and to provide a basis for development of novel methods to enhance anti-microbial and anti-
inflammatory therapeutics.
项目概要
磷酸肌醇 (IP) 是可扩散的细胞内信使(称为“IP 代码”),执行关键的任务
在真核细胞中发挥功能,但这些分子对免疫和宿主防御的贡献仍然存在
尚未充分探索。通过公正的方法,我们的实验室最近发现了知识产权惊人的新角色
宿主-病毒界面的分子:(1)在坏死性凋亡过程中,促炎性细胞死亡机制至关重要
抗病毒免疫和 (2) 人类鼻病毒 (RV) 感染期间,其中最常见的
人类的传染源。我们发现产生细胞 IP 的 IP 激酶活性
特征(即 IP3、IP4、IP5、IP6)对于坏死性凋亡和 RV 感染至关重要(通过明显不同的方式)
机制。我们证明IP分子可以直接控制坏死性刽子手,混合谱系
激酶样(MLKL),释放坏死细胞死亡。相反,我们发现 RV 感染依赖于 IP
细胞死亡之前的阶段并且独立于 MLKL,表明 IP 的宿主或病毒靶点尚未确定。
然而,目前尚不清楚不同的IP如何在分子水平上控制这些过程,如何
IP 激酶精确地协作确定细胞 IP 代码,以及该代码在细胞分裂过程中的调节方式
感染或细胞因子刺激来介导免疫。我们的中心假设是肌醇磷酸盐和
它们的激酶在先天免疫反应和病毒感染过程中发挥重要的调节作用
与宿主或病毒靶标的相互作用。在这里,我们将确定参与的精确机制
通过使用强大的遗传和免疫过程,肌醇磷酸盐编码
生化工具包,并将我们在分子遗传学和病毒学方面的专业知识与协作团队相结合
磷酸肌醇生物学和生物化学领域的领先专家。具体来说,我们将(1)绘制遗传图谱和
在细胞和生化测定中 IP 物种与坏死性刽子手 MLKL 的物理相互作用,
(2) 定义 IP 密码控制 RV 感染的分子机制。一起,
这些研究将为免疫防御调节和病毒发病机制提供基础见解。我们
希望这项工作能够为理解 IP 代码在免疫和感染中的作用奠定基础
生物学,并为开发增强抗微生物和抗微生物作用的新方法提供基础
炎症治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jan E Carette其他文献
Jan E Carette的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jan E Carette', 18)}}的其他基金
Human 3D neuro-muscular assembloids to study cell tropism and host factor utilization of divergent neuropathogenic enteroviruses
人类 3D 神经肌肉组合体用于研究不同神经致病性肠道病毒的细胞向性和宿主因子利用
- 批准号:
10450520 - 财政年份:2022
- 资助金额:
$ 7.56万 - 项目类别:
Human 3D neuro-muscular assembloids to study cell tropism and host factor utilization of divergent neuropathogenic enteroviruses
人类 3D 神经肌肉组合体用于研究不同神经致病性肠道病毒的细胞向性和宿主因子利用
- 批准号:
10595022 - 财政年份:2022
- 资助金额:
$ 7.56万 - 项目类别:
Host determinants of enterovirus RNA replication and in vivo neuropathogenesis
肠道病毒RNA复制和体内神经发病机制的宿主决定因素
- 批准号:
10379389 - 财政年份:2021
- 资助金额:
$ 7.56万 - 项目类别:
Host determinants of enterovirus RNA replication and in vivo neuropathogenesis
肠道病毒RNA复制和体内神经发病机制的宿主决定因素
- 批准号:
10209690 - 财政年份:2021
- 资助金额:
$ 7.56万 - 项目类别:
Host determinants of enterovirus RNA replication and in vivo neuropathogenesis
肠道病毒RNA复制和体内神经发病机制的宿主决定因素
- 批准号:
10598484 - 财政年份:2021
- 资助金额:
$ 7.56万 - 项目类别:
Deciphering the inositol phosphate code in viral pathogenesis and immunity
破译病毒发病机制和免疫中的肌醇磷酸密码
- 批准号:
10265715 - 财政年份:2020
- 资助金额:
$ 7.56万 - 项目类别:
Deciphering the inositol phosphate code in viral pathogenesis and immunity
破译病毒发病机制和免疫中的肌醇磷酸密码
- 批准号:
10557840 - 财政年份:2019
- 资助金额:
$ 7.56万 - 项目类别:
Deciphering the inositol phosphate code in viral pathogenesis and immunity
破译病毒发病机制和免疫中的肌醇磷酸密码
- 批准号:
10338053 - 财政年份:2019
- 资助金额:
$ 7.56万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 7.56万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 7.56万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 7.56万 - 项目类别:
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 7.56万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 7.56万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 7.56万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 7.56万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 7.56万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 7.56万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 7.56万 - 项目类别:
Continuing Grant














{{item.name}}会员




