Prediction of Anti-Cancer Medication Discontinuation via Patient Portal Messages and Structured Electronic Medical Records
通过患者门户消息和结构化电子病历预测抗癌药物停药
基本信息
- 批准号:10398881
- 负责人:
- 金额:$ 38.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:Academic Medical CentersAdjuvantAreaAttentionBackBiometryCancer PatientCessation of lifeClinicalCodeCommunicationComputer softwareComputerized Medical RecordConsumptionDataDiagnosisFutureHealthHealth Care CostsHealth Care ResearchHealth PersonnelHealthcareHuman CharacteristicsInterventionInterviewInvestigationKnowledgeKnowledge DiscoveryLabelLeadLearningMachine LearningMalignant NeoplasmsManualsMedicalMethodsModelingMorbidity - disease rateOncologyOralPatientsPharmaceutical PreparationsProbabilityProcessRecurrenceRegimenResearchResearch PersonnelResourcesRiskSampling BiasesSelf AdministrationSemanticsServicesSocietiesSociologyStatistical ModelsSupervisionSurveysSurvival RateTechnologyTest ResultTestingText MessagingTimeTreatment ProtocolsUnited StatesWorkanti-cancercancer recurrencecancer therapycompliance behaviorcostdesignelectronic structureexpectationexperiencehealth care deliveryhealth care service utilizationhigh riskhormone receptor-positivehormone therapyhuman subjectimprovedmachine learning modelmalignant breast neoplasmmobile computingmortalitypatient engagementpatient portalpatient-clinician communicationpreventrecruitside effectsocial cognitive theorytext searchingtreatment adherenceunsupervised learning
项目摘要
Summary
Cancer is a leading cause of morbidity in the United States, with more than half a million deaths
estimated in 2019. Systemic cancer therapies are increasingly being designed as long-term oral
anti-cancer medications, given the increased convenience of a self-administered regimen. For
instance, patients with operable hormone-receptor-positive breast cancer are prescribed adjuvant
oral hormonal therapy, with an expectation that they continue their regimen for a minimum of 5
years to maximize the benefits. Although many oral therapies have proven effective in mitigating
cancer recurrence and mortality, discontinuation to these treatments are not uncommon. This is
a concern because medication discontinuation before the completion of a prescribed treatment
protocol leads to lower survival rates, increased risks of recurrence, and higher healthcare costs.
To improve treatment adherence and promise better healthcare delivery, it is essential for
healthcare providers to know when and why a cancer patient will discontinue their medications.
While there have been various investigations into regimen discontinuation, the focus of these
studies is either on knowledge discovery or intervention. While knowledge discovery focuses on
characterizing the potential factors that lead to medication discontinuation, intervention aims to
leverage discovered knowledge to design and test effective strategies to help patients adhere to
treatments. Because there are thousands of cancer patients, it is impossible for healthcare
providers to apply intervention to each of them. Limited medical resources need to be allocated
efficiently, such that patients with a higher risk of discontinuing medications will receive greater,
timely attention. Yet, the increasing integration of online communication and mobile computing
technologies into the healthcare domain are generating massive quantities of patient-generated
information. Thus, we propose to apply online patient-provider communications in a patient portal
to supplement traditional EMR data to better understand a cancer patient’s medical experience.
The central hypothesis of this project is that such communications together with structured EMRs
can be applied to learn and forecast oral anti-cancer medication discontinuation. The specific
aims of this project designed to test our central hypothesis are to 1) discover what has been
communicated in a patient portal; 2) infer how patient portal messages and structured EMRs are
associated with medication discontinuation; and 3) determine who are more likely to discontinue
medications. To the best of our knowledge, this is the first study to apply the messages in a patient
portal and structured EMRs to investigate medication discontinuation for cancer patients.
摘要
癌症是美国发病率的主要原因,有超过50万人死于癌症
预计在2019年。系统性癌症治疗越来越多地被设计为长期口服
抗癌药物,考虑到自我给药方案的便利性增加。为
例如,激素受体阳性的可手术乳腺癌患者被开出辅助剂
口服激素治疗,预计他们将继续他们的养生法至少5
几年来实现利益最大化。尽管许多口服疗法已被证明在缓解
癌症复发和死亡,停止这些治疗并不少见。这是
一个令人担忧的问题,因为药物在处方药治疗结束之前就停止了
方案导致更低的存活率,更高的复发风险和更高的医疗成本。
为了提高治疗依从性并承诺更好地提供医疗服务,至关重要的是
医疗保健提供者知道癌症患者何时以及为什么会停止服药。
虽然已经对停用方案进行了各种调查,但这些调查的重点
研究要么是关于知识发现,要么是关于干预。当知识发现专注于
为了描述导致停药的潜在因素,干预措施旨在
利用已发现的知识设计和测试有效的策略,帮助患者坚持
治疗。因为有成千上万的癌症患者,医疗保健是不可能的
提供者对其中的每一个都进行干预。需要分配有限的医疗资源
有效,这样,停药风险较高的患者将获得更大的,
及时关注。然而,在线通信和移动计算的日益融合
进入医疗保健领域的技术正在产生大量的患者生成的
信息。因此,我们建议在患者门户中应用在线患者-提供者通信
补充传统的电子病历数据,以更好地了解癌症患者的医疗经验。
该项目的中心假设是,这种通信与结构化的EMR一起
可应用于学习和预测口服抗癌药物停药。具体的
这个项目旨在检验我们的中心假说,目的是1)发现
在患者门户中进行通信;2)推断患者门户消息和结构化EMR是如何
与停药有关;以及3)确定谁更有可能停药
药物。据我们所知,这是第一项将这些信息应用于患者的研究
门户和结构化急诊室以调查癌症患者的停药情况。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhijun Yin其他文献
Zhijun Yin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhijun Yin', 18)}}的其他基金
Prediction of Anti-Cancer Medication Discontinuation via Patient Portal Messages and Structured Electronic Medical Records
通过患者门户消息和结构化电子病历预测抗癌药物停药
- 批准号:
10616709 - 财政年份:2020
- 资助金额:
$ 38.69万 - 项目类别:
相似海外基金
Metachronous synergistic effects of preoperative viral therapy and postoperative adjuvant immunotherapy via long-term antitumor immunity
术前病毒治疗和术后辅助免疫治疗通过长期抗肿瘤免疫产生异时协同效应
- 批准号:
23K08213 - 财政年份:2023
- 资助金额:
$ 38.69万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving the therapeutic immunity of cancer vaccine with multi-adjuvant polymeric nanoparticles
多佐剂聚合物纳米粒子提高癌症疫苗的治疗免疫力
- 批准号:
2881726 - 财政年份:2023
- 资助金额:
$ 38.69万 - 项目类别:
Studentship
Countering sympathetic vasoconstriction during skeletal muscle exercise as an adjuvant therapy for DMD
骨骼肌运动期间对抗交感血管收缩作为 DMD 的辅助治疗
- 批准号:
10735090 - 财政年份:2023
- 资助金额:
$ 38.69万 - 项目类别:
Evaluation of the Sensitivity to Endocrine Therapy (SET ER/PR) Assay to predict benefit from extended duration of adjuvant endocrine therapy in the NSABP B-42 trial
NSABP B-42 试验中内分泌治疗敏感性 (SET ER/PR) 测定的评估,用于预测延长辅助内分泌治疗持续时间的益处
- 批准号:
10722146 - 财政年份:2023
- 资助金额:
$ 38.69万 - 项目类别:
AUGMENTING THE QUALITY AND DURATION OF THE IMMUNE RESPONSE WITH A NOVEL TLR2 AGONIST-ALUMINUM COMBINATION ADJUVANT
使用新型 TLR2 激动剂-铝组合佐剂增强免疫反应的质量和持续时间
- 批准号:
10933287 - 财政年份:2023
- 资助金额:
$ 38.69万 - 项目类别:
DEVELOPMENT OF SAS A SYNTHETIC AS01-LIKE ADJUVANT SYSTEM FOR INFLUENZA VACCINES
流感疫苗类 AS01 合成佐剂系统 SAS 的开发
- 批准号:
10935776 - 财政年份:2023
- 资助金额:
$ 38.69万 - 项目类别:
DEVELOPMENT OF SMALL-MOLECULE DUAL ADJUVANT SYSTEM FOR INFLUENZA VIRUS VACCINE
流感病毒疫苗小分子双佐剂体系的研制
- 批准号:
10935796 - 财政年份:2023
- 资助金额:
$ 38.69万 - 项目类别:
A GLYCOLIPID ADJUVANT 7DW8-5 FOR MALARIA VACCINES
用于疟疾疫苗的糖脂佐剂 7DW8-5
- 批准号:
10935775 - 财政年份:2023
- 资助金额:
$ 38.69万 - 项目类别:
Adjuvant Photodynamic Therapy to Reduce Bacterial Bioburden in High-Energy Contaminated Open Fractures
辅助光动力疗法可减少高能污染开放性骨折中的细菌生物负载
- 批准号:
10735964 - 财政年份:2023
- 资助金额:
$ 38.69万 - 项目类别:
Adjuvant strategies for universal and multiseasonal influenza vaccine candidates in the context of pre-existing immunity
在已有免疫力的情况下通用和多季节流感候选疫苗的辅助策略
- 批准号:
10649041 - 财政年份:2023
- 资助金额:
$ 38.69万 - 项目类别:














{{item.name}}会员




