Reconstructing Kinase Network Dynamics to Predict Stochastic Cell Cycle Fate

重建激酶网络动力学以预测随机细胞周期命运

基本信息

项目摘要

Abstract- Reconstructing Kinase Network Dynamics to Predict Stochastic Cell Cycle Fate. In a genetically identical and clonally-derived population of cells, stochastic gene expression causes natural cell-to-cell variations in protein expression levels1–8, which causes single cells to exhibit different cell fate when treated with the same stimuli, which can potentially give rise to a population of drug resistant cells2,9, impeding cancer treatment. This phenomenon is referred to as natural phenotypic divergence (NPD), and it arises from how protein expression noise influences the stochastic dynamics of interacting non-linear signaling networks2,9–11. Both protein expression noise and the non-linear nature of signaling dynamics makes it difficult to predict how single cells will respond to a perturbation such as, chemotherapeutics or mitogens. Focusing on cell proliferation responses, we hypothesize that we can predict the timing and probability of cell proliferation by inferring the dynamic connection architecture of the ERK, JNK and Akt signaling networks, which ubiquitously control cell cycle entry. By understanding the connection architecture of these pathways, a causal computational network model can be developed, which can predict the timing and probability of cell proliferation at the single cell level. By combining this network model with live cell imaging experiments spanning different breast cancer subtypes, we can evaluate the generality of how kinase networks control cell cycle entry as well as how cell transformation affects these control systems; which can provide translational insight into novel signaling targets in cancer, predict how transformed cells respond to chemotherapeutics, and the development of transient drug resistance. To achieve this goal, the following aims are proposed: Aim 1. Generate perturbation imaging time course data of ERK, JNK, Akt and S-phase entry dynamics for dynamic network model reconstruction. Aim 2. Construct an ERK-JNK-Akt network model predictive of S-phase entry probability dynamics. Aim 3. Experimentally test model-based predictions of S-phase entry response in a panel of breast cancer cell lines of varying clinical subtypes. Live cell imaging will be used to acquire ERK JNK and Akt dynamics, along with S-phase entry response using kinase translocation reporters (KTR)24,25 and the mCherry-geminin S-phase probe26 respectively. This dynamic data will serve as input data for dynamic modular responses analysis22,23 (DMRA) which will be used to construct a causal network model consisting of the empirical interaction strengths between ERK, JNK and Akt, along with S-phase entry. This network model along with live cell imaging experiments in different breast cancer subtypes will be used to generate and test model predictions, which provide insight the ubiquity of cell cycle entry control systems in mammalian cells and how cell transformation affects that control. The model can provide translational insight into novel cancer signaling pathway targets, as well as predict single cell response to chemotherapeutic and targeted drugs, and consequently transient drug resistance mechanisms.
重构激酶网络动力学预测随机细胞周期命运。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alan Dennis Stern其他文献

Alan Dennis Stern的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Continuing Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
  • 批准号:
    2904511
  • 财政年份:
    2024
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Studentship
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
  • 批准号:
    2339197
  • 财政年份:
    2024
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Standard Grant
Travel: Student Travel Support for the 51st International Symposium on Computer Architecture (ISCA)
旅行:第 51 届计算机体系结构国际研讨会 (ISCA) 的学生旅行支持
  • 批准号:
    2409279
  • 财政年份:
    2024
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Standard Grant
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
  • 批准号:
    2419386
  • 财政年份:
    2024
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Standard Grant
I-Corps: Highly Scalable Differential Power Processing Architecture
I-Corps:高度可扩展的差分电源处理架构
  • 批准号:
    2348571
  • 财政年份:
    2024
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329759
  • 财政年份:
    2024
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Standard Grant
The architecture and evolution of host control in a microbial symbiosis
微生物共生中宿主控制的结构和进化
  • 批准号:
    BB/X014657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Research Grant
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
  • 批准号:
    2344424
  • 财政年份:
    2024
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Standard Grant
RACCTURK: Rock-cut Architecture and Christian Communities in Turkey, from Antiquity to 1923
RACCTURK:土耳其的岩石建筑和基督教社区,从古代到 1923 年
  • 批准号:
    EP/Y028120/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了