Mechanisms of voltage- and ligand-activation in HCN channels
HCN 通道中电压和配体激活的机制
基本信息
- 批准号:10225052
- 负责人:
- 金额:$ 11.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-03-15 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffinityBehaviorBindingBiochemicalBiological ModelsBiophysical ProcessCationsChemical StructureComplementComputer AnalysisCouplingCrystallizationCyclic NucleotidesDataDiseaseElectrophysiology (science)EpilepsyEventExhibitsFluorescenceGoalsHCN1 geneHandHealthHeartHumanHuman bodyIndividualIon ChannelIon Channel GatingKineticsKnowledgeLaboratoriesLigand BindingLigandsLightMeasurementMeasuresMembrane PotentialsMethodsMicroscopyModelingMolecularMolecular ConformationMovementMutagenesisNatureNeuraxisNeuronsPacemakersPathway interactionsPeriodicityPersonal SatisfactionPharmacologyPhysiologicalPlayProcessProtein IsoformsResolutionRestRoleShort-Term MemorySideSignal TransductionSiteStructureSynaptic TransmissionTestingX-Ray Crystallographyanalytical toolbasecyclic-nucleotide gated ion channelsdimerdriving forcedrug developmentfluorophoregenetic linkage analysisinsightlarge-conductance calcium-activated potassium channelsmolecular dynamicsmotor learningnanofabricationneuronal circuitrynew therapeutic targetnodal myocytepainful neuropathypatch clampsingle moleculevoltage
项目摘要
Project Summary
Hyperpolarization-activated and cyclic nucleotide-gated ion channels (HCN) are highly expressed in the heart
and central nervous system where they responsible for slowly activating currents that contribute to pacemaking
activity. In addition to their role in generating rhythmic oscillations in neuronal circuits, these channels also play
a crucial role in working memory and motor learning. They are important pharmacological targets for new drug
development to treat disease conditions such as epilepsies and neuropathic pain. Despite the progress in understanding the structure and physiological role of these ion channels, there remains a significant gap in our
knowledge of the biophysical mechanisms that underpin HCN channel behavior. These channels are unique in
the voltage-gated ion channel superfamily and have the potential to provide new insights into inward rectification and ligand activation. For instance, ensemble ligand binding measurements using patch clamp fluorimetry
have recently suggested a remarkable model of ligand activation that involves a sequence of positive and negative modulation of channel activity by physiological ligand. Although numerous crystal structures of cyclic nucleotide-binding domain (CNBD) from HCN channels are available, the mechanisms that underlie this unusual
form of cooperativity remain unclear. The central goal of this project is to understand how the chemical structure and the resulting forces orchestrate ligand activation in HCN channels. This proposal takes advantage of
the interdisciplinary expertise at UW-Madison to combine single molecule measurements of ligand binding with
structural and functional analysis of ligand activation. We will test the hypothesis that ligand activation in HCN
channels may involve a symmetry-breaking switch to a dimer of dimer configuration. In specific aim 1, we will
use zero-mode waveguides to measure the binding of individual ligands to the cyclic-nucleotide binding domains. This will allow us to directly measure energetics of each ligand-binding step and to track the cooperativity associated with this process. With this analysis in hand, we will be able to identify the key molecular determinants responsible for each of the four ligands. In specific aim 2, we will use X-ray crystallography to determine the structures of the unliganded states of the HCN CNBDs as well as new conformations of their
liganded forms. In specific aim 3, we will carry out functional analysis of ligand activation using electrophysiological and biochemical binding studies. These studies combined with mutagenesis will identify the molecular
bases for isoform-specific differences in ligand activation. The proposed studies are expected to shed new light
on the molecular forces that underlie conformational changes during the ligand activation in a voltage- and ligand-activated ion channel.
项目摘要
超极化激活和环核苷酸门控离子通道(HCN)在心脏中高度表达
和中枢神经系统,负责缓慢激活有助于起搏的电流
活动除了在神经元回路中产生节律性振荡的作用外,这些通道还发挥着
在工作记忆和运动学习中起着关键作用。它们是新药开发的重要药理学靶点
开发用于治疗疾病状况如癫痫和神经性疼痛。尽管在理解这些离子通道的结构和生理作用方面取得了进展,但在我们的研究中仍然存在重大差距。
了解HCN通道行为的生物物理机制。这些渠道是独一无二的,
电压门控离子通道超家族,并有可能提供新的见解向内整流和配体激活。例如,使用膜片钳荧光测定法的整体配体结合测量
最近提出了一种配体激活的显著模型,该模型涉及生理配体对通道活性的一系列正和负调节。尽管HCN通道的环核苷酸结合结构域(CNBD)的晶体结构众多,但这种不寻常的CNBD的机制仍然是未知的。
协同性的形式仍不清楚。该项目的中心目标是了解化学结构和所产生的力如何协调HCN通道中的配体激活。该提案利用了
在威斯康星大学麦迪逊分校的跨学科专业知识,结合配体结合的联合收割机单分子测量与
配体活化结构和功能分析。我们将检验HCN中的配体活化
通道可能涉及到二聚体构型的二聚体的破坏性转换。具体目标1:
使用零模式波导来测量单个配体与环状核苷酸结合结构域的结合。这将使我们能够直接测量每个配体结合步骤的能量,并跟踪与此过程相关的协同性。有了这个分析,我们将能够确定负责四个配体中每一个的关键分子决定因素。在具体目标2中,我们将使用X射线晶体学来确定HCN CNBD的未配位态的结构以及它们的新构象。
配体形式。在具体目标3中,我们将使用电生理和生化结合研究对配体激活进行功能分析。这些研究结合诱变将确定分子
配体活化中同种型特异性差异的基础。拟议中的研究有望为我们提供新的视角,
在电压和配体激活的离子通道中的配体激活期间,分子力是构象变化的基础。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sodium channels caught in the act.
钠通道当场被捕。
- DOI:10.1126/science.aaw8645
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Chowdhury,Sandipan;Chanda,Baron
- 通讯作者:Chanda,Baron
Observing Single-Molecule Dynamics at Millimolar Concentrations.
- DOI:10.1002/anie.201612050
- 发表时间:2017-02-20
- 期刊:
- 影响因子:0
- 作者:Goldschen-Ohm MP;White DS;Klenchin VA;Chanda B;Goldsmith RH
- 通讯作者:Goldsmith RH
Mapping Electromechanical Coupling Pathways in Voltage-Gated Ion Channels: Challenges and the Way Forward.
- DOI:10.1016/j.jmb.2021.167104
- 发表时间:2021-08-20
- 期刊:
- 影响因子:5.6
- 作者:Cowgill J;Chanda B
- 通讯作者:Chanda B
The intrinsically liganded cyclic nucleotide-binding homology domain promotes KCNH channel activation.
- DOI:10.1085/jgp.201611701
- 发表时间:2017-02
- 期刊:
- 影响因子:0
- 作者:Zhao Y;Goldschen-Ohm MP;Morais-Cabral JH;Chanda B;Robertson GA
- 通讯作者:Robertson GA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Baron Chanda其他文献
Baron Chanda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Baron Chanda', 18)}}的其他基金
TriMED: Measuring, Modeling and Manipulating Excitability and Disease
TriMED:测量、建模和操纵兴奋性和疾病
- 批准号:
10627404 - 财政年份:2023
- 资助金额:
$ 11.49万 - 项目类别:
Biophysical mechanisms of gating and modulation in voltage-gated ion channel superfamily
电压门控离子通道超家族的门控和调节的生物物理机制
- 批准号:
10266191 - 财政年份:2020
- 资助金额:
$ 11.49万 - 项目类别:
Biophysical mechanisms of gating and modulation in voltage-gated ion channel superfamily
电压门控离子通道超家族的门控和调节的生物物理机制
- 批准号:
10225212 - 财政年份:2020
- 资助金额:
$ 11.49万 - 项目类别:
Biophysical mechanisms of gating and modulation in voltage-gated ion channel superfamily
电压门控离子通道超家族的门控和调节的生物物理机制
- 批准号:
10609452 - 财政年份:2020
- 资助金额:
$ 11.49万 - 项目类别:
Biophysical mechanisms of gating and modulation in voltage-gated ion channel superfamily
电压门控离子通道超家族的门控和调节的生物物理机制
- 批准号:
10400913 - 财政年份:2020
- 资助金额:
$ 11.49万 - 项目类别:
Synthetic design of an all-optical electrophysiology system
全光学电生理系统的综合设计
- 批准号:
10225934 - 财政年份:2019
- 资助金额:
$ 11.49万 - 项目类别:
Thermodynamics and energetics of voltage-gated ion channels
电压门控离子通道的热力学和能量学
- 批准号:
8690188 - 财政年份:2012
- 资助金额:
$ 11.49万 - 项目类别:
Thermodynamics and Energetics of voltage-gated ion channels
电压门控离子通道的热力学和能量学
- 批准号:
10226481 - 财政年份:2012
- 资助金额:
$ 11.49万 - 项目类别:
Thermodynamics and energetics of voltage-gated ion channels
电压门控离子通道的热力学和能量学
- 批准号:
8544516 - 财政年份:2012
- 资助金额:
$ 11.49万 - 项目类别:
Thermodynamics and energetics of voltage-gated ion channels
电压门控离子通道的热力学和能量学
- 批准号:
8422219 - 财政年份:2012
- 资助金额:
$ 11.49万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 11.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 11.49万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 11.49万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 11.49万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 11.49万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 11.49万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 11.49万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 11.49万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 11.49万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 11.49万 - 项目类别:
Continuing Grant