Optimization and validation of integrated microscale technologies for low-cost, automated production of PET molecular imaging tracers for cancer research
集成微尺度技术的优化和验证,用于低成本、自动化生产用于癌症研究的 PET 分子成像示踪剂
基本信息
- 批准号:10224825
- 负责人:
- 金额:$ 37.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdvanced DevelopmentAmino AcidsAnimal ModelAnimalsApoptosisBiochemical ProcessBiologicalBiological AssayBiological ProcessCell Culture TechniquesCellsCellular AssayClinicalComputer softwareConsumptionCost SharingDataDevelopmentDevicesDiseaseEquipmentFluorineGamma RaysGlucoseGoalsHigh Pressure Liquid ChromatographyHuman ResourcesHypoxiaImageIn VitroIndividualInfrastructureInstitutionIsotopesLabelLiquid substanceMalignant NeoplasmsMeasurementMetabolismMethodsMicrofluidic MicrochipsMicrofluidicsModelingMolecularMolecular ProbesPatientsPenetrationPerformancePositronPositron-Emission TomographyPreparationProblem SolvingProductionPublic HealthPumpRadiationRadioactiveRadioactivityRadiochemistryRadioisotopesRadiolabeledRadiometryReagentReportingResearchResearch ActivityResearch PersonnelResearch Project GrantsSamplingScanningScheduleSystemTechnologyThickTissuesTracerTranslatingTranslationsTreatment EfficacyValidationangiogenesisanticancer researchattenuationbasecostdesignflexibilityfluorodeoxyglucosefluorophorein vivoin vivo imaginginsightmolecular imagingneoplastic cellnoveloperationoverexpressionpre-clinicalpredicting responseprototypequantitative imagingradiochemicalradiotracerreceptor densitytechnology validationtooltreatment responsetumor microenvironmentwasting
项目摘要
PROJECT SUMMARY
Positron-emission tomography (PET) probes (or “tracers”) are biological molecules containing positron-emitting
isotopes, the decay of which can be detected with high sensitivity to perform a variety of in vitro or 3D in vivo
assays of biochemical processes for cancer research. A significant advantage of radiolabels is the high tissue
penetration of gamma rays – this allows discoveries at the cellular level to be translated to new animal models
(e.g. to study the mechanisms and treatment of disease) and then to assays in patients (e.g. to predict response
to treatment or assess efficacy of treatment), all with the same probe. Thousands of PET tracers have been
reported for assessing angiogenesis, tumor microenvironment (e.g. hypoxia), metabolism (e.g., glucose or amino
acids), density of receptors, etc. Another advantage is that many PET tracers are labeled with a single radioactive
atom, typically causing less disruption to biological function compared to bulky labels such as fluorophores.
Current methods for routine production of these short-lived PET tracers are aimed largely at the clinical market,
i.e. for production of large, multi-patient batches. For a few tracers (e.g. [18F]FDG), there is sufficient demand
that scheduling can be coordinated (i.e. many patient scans and research projects on the same day) and the
high production cost can be divided among many patients and researchers. In cases where demand is insufficient
to enable cost-sharing, PET tracers are prohibitively expensive. Since the radioisotope is only a fraction of the
production cost, scaling down to a smaller amount of radioactivity does not provide significant cost reduction for
researchers that only need a small quantity of the probe. Other drivers of cost are the expensive equipment and
specialized facilities (i.e. hot cells, to protect operators when using high amounts of radioisotope) that are not
available to cancer researchers at many institutions, and the high cost of reagents consumed for each batch of
tracer produced. Due to the high cost, many researchers choose alternative labeling methods (e.g. fluorescent,
bioluminescent) despite the limitations of these approaches.
Our preliminary data have shown that microfluidic synthesizers can successfully produce diverse PET tracers
while providing unique advantages to solve the above problems: (1) Droplet microreactors consume 10-1000x
less reagents than conventional systems; (2) Unlike conventional systems, molar activity in microreactors
remains high even when producing small quantities (radioactivity) of the tracer; (3) The compact size of
microreactors enables local radiation shielding and avoids the need for hot cells; (4) Production of small batches
for individual researcher use will require much less radiation shielding (thickness), compared to typical hot cells.
Previous studies have established feasibility and suggest that microdroplet synthesizers are poised to enable
routine, low-cost production of tracers on demand. This could “commoditize” PET and make diverse tracers
available to any investigator. This proposal seeks to perform advanced development and validation of this
technology to make radiolabeled tracers widely available for assays in a variety of cancer research applications.
项目摘要
正电子发射断层扫描(PET)探针(或“示踪剂”)是含有正电子发射的生物分子。
同位素,其衰变可以高灵敏度检测,以进行各种体外或体内3D测量。
用于癌症研究的生化过程分析。放射性标记的一个显著优点是高组织特异性。
伽马射线的穿透-这使得细胞水平的发现可以转化为新的动物模型
(e.g.研究疾病的机制和治疗),然后用于患者的测定(例如,预测反应
治疗或评估治疗效果),所有这些都使用相同的探针。成千上万的PET示踪剂已经被
据报道用于评估血管生成、肿瘤微环境(例如缺氧),代谢(例如,葡萄糖或氨基
另一个优点是许多PET示踪剂用单个放射性标记物标记。
原子,与诸如荧光团的大体积标记相比,通常对生物功能造成较少的破坏。
目前常规生产这些短寿命PET示踪剂的方法主要针对临床市场,
即用于大批量、多患者的生产。对于少数示踪剂(例如[18 F]FDG),有足够的需求
可以协调调度(即,在同一天进行许多患者扫描和研究项目),
高生产成本可以由许多患者和研究人员分摊。在需求不足的情况下
为了能够分摊成本,PET示踪剂非常昂贵。因为放射性同位素只是
尽管如此,由于生产成本的增加,按比例缩小到较少量的放射性并不能显著降低生产成本,
研究人员只需要少量的探针。成本的其他驱动因素是昂贵的设备,
专用设施(即热室,在使用大量放射性同位素时保护操作人员),
许多机构的癌症研究人员都可以获得,每批药物消耗的试剂成本很高,
生产的示踪剂由于成本高,许多研究人员选择替代标记方法(例如荧光,
生物发光的),尽管这些方法有局限性。
我们的初步数据表明,微流控合成器可以成功地产生不同的PET示踪剂
同时为解决上述问题提供了独特的优势:(1)液滴微反应器消耗10- 1000 ×
与常规系统不同,微反应器中的摩尔活性
即使在产生少量(放射性)示踪剂时也保持高水平;(3)
微型反应器能够实现局部辐射屏蔽,避免了对热室的需要;(4)小批量生产
与典型的热室相比,对于个人研究者使用,将需要更少的辐射屏蔽(厚度)。
以前的研究已经建立了可行性,并表明微滴合成器准备使
按需生产常规低成本示踪剂。这可以使PET“商品化”,并使示踪剂多样化
提供给任何调查员。该提案旨在进行先进的开发和验证,
技术,使放射性标记的示踪剂广泛用于各种癌症研究应用中的测定。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimization of Radiochemical Reactions using Droplet Arrays.
- DOI:10.3791/62056
- 发表时间:2021-02-12
- 期刊:
- 影响因子:0
- 作者:Rios A;Holloway TS;Wang J;van Dam RM
- 通讯作者:van Dam RM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Michael van Dam其他文献
Robert Michael van Dam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Michael van Dam', 18)}}的其他基金
Optimization and validation of integrated microscale technologies for low-cost, automated production of PET molecular imaging tracers for cancer research
集成微尺度技术的优化和验证,用于低成本、自动化生产用于癌症研究的 PET 分子成像示踪剂
- 批准号:
9795734 - 财政年份:2019
- 资助金额:
$ 37.91万 - 项目类别:
Optimization and validation of integrated microscale technologies for low-cost, automated production of PET molecular imaging tracers for cancer research
集成微尺度技术的优化和验证,用于低成本、自动化生产用于癌症研究的 PET 分子成像示踪剂
- 批准号:
9982914 - 财政年份:2019
- 资助金额:
$ 37.91万 - 项目类别:
High-throughput radiochemistry platform for accelerated discovery and development of novel PET imaging agents for cancer
高通量放射化学平台,用于加速发现和开发新型癌症 PET 成像剂
- 批准号:
9231796 - 财政年份:2017
- 资助金额:
$ 37.91万 - 项目类别:
Automated microfluidic production of high specific activity PET tracers to enable routine CNS imaging
自动微流体生产高比活性 PET 示踪剂,以实现常规 CNS 成像
- 批准号:
8870224 - 财政年份:2015
- 资助金额:
$ 37.91万 - 项目类别:
Automated microfluidic production of high specific activity PET tracers to enable routine CNS imaging
自动微流体生产高比活性 PET 示踪剂,以实现常规 CNS 成像
- 批准号:
9060851 - 财政年份:2015
- 资助金额:
$ 37.91万 - 项目类别:
Compact microfluidic PET probe concentrator for preclinical and in vitro imaging
用于临床前和体外成像的紧凑型微流控 PET 探针浓缩器
- 批准号:
8737815 - 财政年份:2013
- 资助金额:
$ 37.91万 - 项目类别:
Compact microfluidic PET probe concentrator for preclinical and in vitro imaging
用于临床前和体外成像的紧凑型微流控 PET 探针浓缩器
- 批准号:
8624154 - 财政年份:2013
- 资助金额:
$ 37.91万 - 项目类别:
Microliter radiosynthesizer for producing high specific activity PET ligands
用于生产高比活性 PET 配体的微升放射合成仪
- 批准号:
8508266 - 财政年份:2012
- 资助金额:
$ 37.91万 - 项目类别:
相似海外基金
ADVANCED DEVELOPMENT OF LQ A LIPOSOME-BASED SAPONIN-CONTAINING ADJUVANT FOR USE IN PANSARBECOVIRUS VACCINES
用于 Pansarbecovirus 疫苗的 LQ A 脂质体含皂苷佐剂的先进开发
- 批准号:
10935820 - 财政年份:2023
- 资助金额:
$ 37.91万 - 项目类别:
ADVANCED DEVELOPMENT OF BBT-059 AS A RADIATION MEDICAL COUNTERMEASURE FOR DOSING UP TO 48H POST EXPOSURE"
BBT-059 的先进开发,作为辐射医学对策,可在暴露后 48 小时内进行给药”
- 批准号:
10932514 - 财政年份:2023
- 资助金额:
$ 37.91万 - 项目类别:
Advanced Development of a Combined Shigella-ETEC Vaccine
志贺氏菌-ETEC 联合疫苗的先进开发
- 批准号:
10704845 - 财政年份:2023
- 资助金额:
$ 37.91万 - 项目类别:
Advanced development of composite gene delivery and CAR engineering systems
复合基因递送和CAR工程系统的先进开发
- 批准号:
10709085 - 财政年份:2023
- 资助金额:
$ 37.91万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10409385 - 财政年份:2022
- 资助金额:
$ 37.91万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10710595 - 财政年份:2022
- 资助金额:
$ 37.91万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 37.91万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE CANDIDATE FOR STAPHYLOCOCCUS AUREUS INFECTION
金黄色葡萄球菌感染候选疫苗的高级开发
- 批准号:
10710588 - 财政年份:2022
- 资助金额:
$ 37.91万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10788051 - 财政年份:2022
- 资助金额:
$ 37.91万 - 项目类别: