The Population Research Institute: Computational and Spatial Analysis
人口研究所:计算和空间分析
基本信息
- 批准号:10225132
- 负责人:
- 金额:$ 26.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-07-05 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AreaBig DataCloud ComputingCollaborationsCollectionComplexContractsCustomDataData AnalysesData CollectionData SetData SourcesDatabasesDemographerDevelopmentDimensionsEducational workshopEnsureEnvironmentFundingGrantHigh Performance ComputingIndividualInfrastructureLeadMachine LearningMediationMentorsMethodologyMethodsPathway AnalysisPerformancePopulationPopulation DynamicsPopulation ResearchPopulation SciencesProductivityProviderRegulationResearchResearch InstituteResearch PersonnelResearch Project GrantsResearch SupportResourcesRoleScientistSecureServicesSocial NetworkSocial ProblemsSourceSystemTechniquesTwitterUniversitiesarchive dataarchived datacomplex datacomputing resourcescost effectivedata accessdata enclavedata infrastructuredata integrationdata managementdata repositoryhealth dataimprovedinnovationmultiscale datasocial mediaspatiotemporalstatisticssuccesstoolweb site
项目摘要
Project Summary: PRI Computational and Spatial Analysis Core
The Computational and Spatial Analysis (CSA) core is the innovation driver for the Population Research
Institute (PRI), infusing cutting-edge methodological approaches across PRI’s primary research areas to
advance population dynamics research. The CSA core has scientific expertise and research support capacity
in data integration across multiple dimensions and scales, spatial statistics, social media analytics, innovative
and nontraditional data collection and analysis, and social network analysis. Through its specific aims, the CSA
core provides access to methodological expertise from project development through completion and
dissemination. The CSA core has four specific aims. First, the core supports the use of multi-dimensional,
multi-scale spatiotemporal data. This includes the integration and analysis of large spatial, historical, individual,
and contextual datasets. Second, the core provides services in multifaceted data support, programming,
statistical and social network expertise, and spatial statistics and analysis for innovative interdisciplinary
population research. These services also reduce investigator burden by ensuring compliance with data
providers and external agency regulations as well as access to a variety of demographic and health data.
Third, the CSA core provides resources and expertise in innovative Big Data and social media analytics for
population research. PRI is a leader in the use of social media data to advance population science. Fourth, the
core integrates cutting-edge methodologies into population research across PRI’s primary research areas with
workshops and mentoring. Although these activities are accessible to population scientists within and beyond
PRI, they are tailored to be responsive to the needs of junior scientists and to advance their competitiveness
for external funding and to raise the impact of their contributions to population research in collaboration with
the Development core. The CSA core is co-directed by senior population scientists supported by an expert
advisory board. The core is staffed efficiently to maximize research productivity and exploit existing data and
methodological infrastructure.
项目概要:PRI计算和空间分析核心
计算和空间分析(CSA)的核心是人口研究的创新驱动力
研究所(PRI),在PRI的主要研究领域注入尖端的方法,
推进人口动态研究。加空局核心拥有科学专门知识和研究支助能力
在跨多个维度和尺度的数据集成、空间统计、社交媒体分析、创新
非传统的数据收集和分析,以及社交网络分析。通过其具体目标,CSA
核心方案提供从项目制定到完成的方法专门知识,
传播。CSA核心有四个具体目标。首先,核心支持多维度的使用,
多尺度时空数据这包括对大空间的、历史的、个人的、
和上下文数据集。第二,核心提供多方面的数据支持、编程、
统计和社会网络专门知识,以及空间统计和分析,以促进创新的跨学科
人口研究。这些服务还通过确保数据合规性减轻了研究者的负担
提供者和外部机构的规定以及获得各种人口和健康数据。
第三,CSA核心在创新的大数据和社交媒体分析方面提供资源和专业知识,
人口研究。PRI是使用社交媒体数据推进人口科学的领导者。四是
核心将尖端的方法学整合到PRI主要研究领域的人口研究中,
研讨会和指导。虽然这些活动是人口科学家内外接触
在PRI中,它们是针对年轻科学家的需求而量身定制的,以提高他们的竞争力。
为外部供资,并提高其对人口研究的贡献的影响,
发展核心。CSA核心由资深人口科学家共同指导,并由一名专家提供支持。
顾问委员会该核心的工作人员配备高效,以最大限度地提高研究生产力和利用现有数据,
方法基础设施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guangqing Chi其他文献
Guangqing Chi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guangqing Chi', 18)}}的其他基金
The Population Research Institute: Computational and Spatial Analysis
人口研究所:计算和空间分析
- 批准号:
10377527 - 财政年份:2001
- 资助金额:
$ 26.58万 - 项目类别:
The Population Research Institute: Computational and Spatial Analysis
人口研究所:计算和空间分析
- 批准号:
10618175 - 财政年份:2001
- 资助金额:
$ 26.58万 - 项目类别:
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Travel: Student Travel Support for IEEE/ACM International Conferences on Utility and Cloud Computing (UCC 2022) and Big Data Computing, Applications and Technologies (BDCAT 2022)
差旅:IEEE/ACM 公用事业和云计算国际会议 (UCC 2022) 以及大数据计算、应用程序和技术 (BDCAT 2022) 的学生差旅支持
- 批准号:
2233166 - 财政年份:2022
- 资助金额:
$ 26.58万 - 项目类别:
Standard Grant
Online Mining of Big Data Streams Using Cloud Computing
使用云计算在线挖掘大数据流
- 批准号:
RGPIN-2014-06565 - 财政年份:2018
- 资助金额:
$ 26.58万 - 项目类别:
Discovery Grants Program - Individual
Online Mining of Big Data Streams Using Cloud Computing
使用云计算在线挖掘大数据流
- 批准号:
RGPIN-2014-06565 - 财政年份:2017
- 资助金额:
$ 26.58万 - 项目类别:
Discovery Grants Program - Individual
FoodML: Development of a food quality and safety risk management system, using cloud computing, big data and data science
FoodML:利用云计算、大数据和数据科学开发食品质量和安全风险管理系统
- 批准号:
1956111 - 财政年份:2017
- 资助金额:
$ 26.58万 - 项目类别:
Studentship
Online Mining of Big Data Streams Using Cloud Computing
使用云计算在线挖掘大数据流
- 批准号:
462308-2014 - 财政年份:2016
- 资助金额:
$ 26.58万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Online Mining of Big Data Streams Using Cloud Computing
使用云计算在线挖掘大数据流
- 批准号:
RGPIN-2014-06565 - 财政年份:2016
- 资助金额:
$ 26.58万 - 项目类别:
Discovery Grants Program - Individual
Improving Research and Education of Big Data and Cloud Computing at Winston-Salem State University
改善温斯顿塞勒姆州立大学大数据和云计算的研究和教育
- 批准号:
1600864 - 财政年份:2016
- 资助金额:
$ 26.58万 - 项目类别:
Standard Grant
Online Mining of Big Data Streams Using Cloud Computing
使用云计算在线挖掘大数据流
- 批准号:
RGPIN-2014-06565 - 财政年份:2015
- 资助金额:
$ 26.58万 - 项目类别:
Discovery Grants Program - Individual
Fast Algorithms for Solving Big Data PDE Parameter Estimation Problems on Cloud Computing Platforms
云计算平台上解决大数据偏微分方程参数估计问题的快速算法
- 批准号:
1522599 - 财政年份:2015
- 资助金额:
$ 26.58万 - 项目类别:
Standard Grant
Online Mining of Big Data Streams Using Cloud Computing
使用云计算在线挖掘大数据流
- 批准号:
462308-2014 - 财政年份:2015
- 资助金额:
$ 26.58万 - 项目类别:
Discovery Grants Program - Accelerator Supplements