Operationalizing Machine Learning and Discrete Event Simulation Models to Improve Clinic Efficiency
运用机器学习和离散事件模拟模型来提高诊所效率
基本信息
- 批准号:10227120
- 负责人:
- 金额:$ 32.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAmbulatory Care FacilitiesAppointmentBooksChildhoodClient satisfactionClinicClinicalDataData SetEffectivenessElectronic Health RecordEventFaceFast Healthcare Interoperability ResourcesFeelingGlaucomaLengthMachine LearningMapsMethodologyMethodsModelingOphthalmologyOutpatientsPatient CarePatient SchedulesPatientsPhysiciansProductionProviderQuality of CareRegulationReportingResearchResourcesScheduleTestingTimeVisitWait TimeWorkapplication programming interfacebarrier to carebaseburnoutdata accesseffectiveness evaluationelectronic datafollow-upimprovedindividual patientmodels and simulationnovelpredictive modelingpressureprospectivetool
项目摘要
PROJECT SUMMARY
Physicians often report feeling pressured to see more patients to maintain revenue, while having less available
time for patient care. Systematic data-driven methods for efficiently scheduling patients are important as
physicians are pressured to see more and more patients. We propose that real time prediction models of
patient visit lengths, the likelihood of missing appointments, and of patient wait times will help schedule
patients more efficiently. Clinics will be able to safely overbook to avoid empty slots from missed appointments,
have guidance for scheduling urgent add-on patients, and provide wait time estimates for patients when there
are delays. We will develop methodologies for accessing data needed for these predictions in real time and
propose that the integration of these models into workflows will improve scheduling accuracy, patient wait time,
and patient satisfaction, while also increasing clinic volumes.
项目摘要
医生经常报告说,为了维持收入,他们感到有压力去看更多的病人,
病人护理的时间用于有效安排患者的系统数据驱动方法很重要,
医生们面临着看越来越多病人的压力。我们提出的真实的时间预测模型,
患者就诊时间、错过预约的可能性以及患者等待时间将有助于安排
患者更有效。诊所将能够安全地超额预订,以避免因错过预约而出现空档期,
制定紧急附加治疗患者的安排指南,并在出现紧急情况时为患者提供等待时间估计
是延迟。我们将开发访问真实的预测所需数据的方法,
建议将这些模型集成到工作流程中将提高调度准确性,患者等待时间,
和患者满意度,同时也增加了诊所数量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michelle Hribar其他文献
Michelle Hribar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michelle Hribar', 18)}}的其他基金
Operationalizing Machine Learning and Discrete Event Simulation Models to Improve Clinic Efficiency
运用机器学习和离散事件模拟模型来提高诊所效率
- 批准号:
10030242 - 财政年份:2020
- 资助金额:
$ 32.73万 - 项目类别:
Modeling and Optimization of Clinical Processes Using EHR Data
使用 EHR 数据对临床流程进行建模和优化
- 批准号:
9765376 - 财政年份:2015
- 资助金额:
$ 32.73万 - 项目类别:














{{item.name}}会员




